首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
2.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

3.
DNA replication occurs in vivo with very high processivity, meaning that the replication complex assembles at the origin(s) of replication and then performs template-directed synthesis of DNA over virtually the entire genome without dissociation. Such processivity also characterizes reconstituted replication holoenzyme complexes in vitro. However, the isolated DNA polymerases are much less processive, especially under physiological conditions. In this paper we monitor the degree of processivity displayed by the bacteriophage T4-coded DNA polymerase while in its proofreading mode by asking whether an isolated polymerase can "edit-out" the 3'-terminal nucleotide from the primer (using the 3'----5'-exonuclease activity of the polymerase) and then switch into the synthesis mode without dissociating from the DNA template. This "switch experiment" is accomplished by using mismatched primer/template substrates as an experimental tool to mimic the situation that T4 DNA polymerase encounters after a misincorporation event has occurred. By performing experiments under single-turnover conditions (obtained using a heparin trap), we demonstrate that T4 DNA polymerase, upon encountering a misincorporated base, neither synthesizes the next base nor dissociates into solution. Instead, with a greater than 80% probability, it removes the misincorporated base and then continues synthesis in a fully processive manner. We also show that the removal of a doubly mispaired sequence from the 3'-terminus of the primer, followed by synthesis, is comparably processive. In contrast, the apparent processivity of removing a triply mispaired terminus is much reduced. Taken together, these observations are consistent with the notion that the "editing active site" of the T4 enzyme optimally accommodates only two unpaired nucleotide residues. Our results do not support the idea that the exonuclease activity of T4 DNA polymerase is highly selective for mismatched termini; they suggest instead that the dwell time at a misincorporated base determines overall editing efficiency. The integrated results of this study provide additional insight into the structure of the T4 DNA polymerase, as well as into the interactions between the polymerase and the polymerase accessory proteins that are required to provide the holoenzyme complex with full processivity.  相似文献   

4.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

5.
6.
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.  相似文献   

7.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

8.
Studies of simian virus 40 (SV40) DNA replication in a reconstituted cell-free system have established that T antigen and two cellular replication proteins, replication protein A (RP-A) and DNA polymerase alpha-primase complex, are necessary and sufficient for initiation of DNA synthesis on duplex templates containing the SV40 origin of DNA replication. To better understand the mechanism of initiation of DNA synthesis, we analyzed the functional interactions of T antigen, RP-A, and DNA polymerase alpha-primase on model single-stranded DNA templates. Purified DNA polymerase alpha-primase was capable of initiating DNA synthesis de novo on unprimed single-stranded DNA templates. This reaction involved the synthesis of a short oligoribonucleotide primer which was then extended into a DNA chain. We observed that the synthesis of ribonucleotide primers by DNA polymerase alpha-primase is dramatically stimulated by SV40 T antigen. The presence of T antigen also increased the average length of the DNA product synthesized on primed and unprimed single-stranded DNA templates. These stimulatory effects of T antigen required direct contact with DNA polymerase alpha-primase complex and were most marked at low template and polymerase concentrations. We also observed that the single-stranded DNA binding protein, RP-A, strongly inhibits the primase activity of DNA polymerase alpha-primase, probably by blocking access of the enzyme to the template. T antigen partially reversed the inhibition caused by RP-A. Our data support a model in which DNA priming is mediated by a complex between T antigen and DNA polymerase alpha-primase with the template, while RP-A acts to suppress nonspecific priming events.  相似文献   

9.
An in vitro replication system reconstituted from six purified T4 bacteriophage proteins, each of which is essential for T4 DNA replication in vivo, requires ATP. Because of the complexity of the complete system, we examine in this report the involvement of ATP in two subsystems of the overall DNA synthesis reaction. One subsystem consists of the T4 DNA polymerase (gene 43 protein) and its "accessory proteins," the gene 44/62 and 45 products. An even simpler subsystem consists of the gene 44/62 and 45 proteins alone, which together have a DNA-dependent ATPase activity. The combination of the 44/62 and 45 proteins hydrolyze ATP to ADP and inorganic phosphate in the presence of DNA. These essential accessory proteins have been previously shown to increase T4 DNA polymerase activity on primed, single-stranded DNA templates. In this report we use nucleotide analogues to demonstrate that this polymerase stimulation requires hydrolysis of the beta,gamma-phosphate bond of ATP. However, our data suggest that the mechanism of accessory protein stimulation is such that less than 1 ATP molecule need be hydrolyzed per 10 deoxyribonucleotides incorporated by the DNA polymerase into DNA.  相似文献   

10.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

11.
12.
Adeno-associated virus (AAV) replicates its DNA by a modified rolling-circle mechanism that exclusively uses leading strand displacement synthesis. To identify the enzymes directly involved in AAV DNA replication, we fractionated adenovirus-infected crude extracts and tested them in an in vitro replication system that required the presence of the AAV-encoded Rep protein and the AAV origins of DNA replication, thus faithfully reproducing in vivo viral DNA replication. Fractions that contained replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) were found to be essential for reconstituting AAV DNA replication. These could be replaced by purified PCNA and RFC to retain full activity. We also found that fractions containing polymerase delta, but not polymerase epsilon or alpha, were capable of replicating AAV DNA in vitro. This was confirmed when highly purified polymerase delta complex purified from baculovirus expression clones was used. Curiously, as the components of the DNA replication system were purified, neither the cellular single-stranded DNA binding protein (RPA) nor the adenovirus-encoded DNA binding protein was found to be essential for DNA replication; both only modestly stimulated DNA synthesis on an AAV template. Also, in addition to polymerase delta, RFC, and PCNA, an as yet unidentified factor(s) is required for AAV DNA replication, which appeared to be enriched in adenovirus-infected cells. Finally, the absence of any apparent cellular DNA helicase requirement led us to develop an artificial AAV replication system in which polymerase delta, RFC, and PCNA were replaced with T4 DNA polymerase and gp32 protein. This system was capable of supporting AAV DNA replication, demonstrating that under some conditions the Rep helicase activity can function to unwind duplex DNA during strand displacement synthesis.  相似文献   

13.
A procedure has been developed which allows the T4 bacteriophage proteins corresponding to the products of genes 43, 44, 45, and 62 to be purified to near homogeneity from a single T4-infected cell lysate (greater than 90% single species as judged by sodium dodecyl sulfate polyacrylamide elctrophoresis). In these preparations, the major problem of removing all contaminating nucleases has been overcome. Each of the above proteins is known from genetic analysis to be essential for phage DNA replication. The protein product of gene 43 is T4 DNA polymerase, and its recovery can be monitored using a standard DNA polymerase assay. The other three gene products have been designated as "polymerase accessory proteins," since they directly enhance polymerase function on both single- and double-stranded DNA templates. Their activities were monitored by an "in vitro complementation assay," which measures the stimulation of DNA synthesis observed in a concentrated lysate of T4 mutant-infected Escherichia coli cells when the missing T4 wild type protein is added. Starting from 300 g of infected cell paste, we obtained 9.3 mg of gene 43 protein, 21 mg of gene 45 protein, and 70 mg of a tight complex made up of 44 and 62 proteins; final yields were estimated at 30%, 14%, and 28%, respectively, of the initial activity present in the lysate. When the above purified proteins are incubated with preparations of two other T4 DNA replication proteins (gene 41 and gene 32 proteins) plus deoxyribonucleoside and ribonucleoside triphosphates, extensive DNA synthesis occurs on both single- and double-stranded DNA templates. As reported elsewhere, this synthesis mimicks that catalyzed by the T4 DNA replication apparatus in vivo.  相似文献   

14.
Prokaryotic DNA replication mechanisms   总被引:8,自引:0,他引:8  
The three different prokaryotic replication systems that have been most extensively studied use the same basic components for moving a DNA replication fork, even though the individual proteins are different and lack extensive amino acid sequence homology. In the T4 bacteriophage system, the components of the DNA replication complex can be grouped into functional classes as follows: DNA polymerase (gene 43 protein), helix-destabilizing protein (gene 32 protein), polymerase accessory proteins (gene 44/62 and 45 proteins), and primosome proteins (gene 41 DNA helicase and gene 61 RNA primase). DNA synthesis in the in vitro system starts by covalent addition onto the 3'OH end at a random nick on a double-stranded DNA template and proceeds to generate a replication fork that moves at about the in vivo rate, and with approximately the in vivo base-pairing fidelity. DNA is synthesized at the fork in a continuous fashion on the leading strand and in a discontinuous fashion on the lagging strand (generating short Okazaki fragments with 5'-linked pppApCpXpYpZ pentaribonucleotide primers). Kinetic studies reveal that the DNA polymerase molecule on the lagging strand stays associated with the fork as it moves. Therefore the DNA template on the lagging strand must be folded so that the stop site for the synthesis of one Okazaki fragment is adjacent to the start site for the next such fragment, allowing the polymerase and other replication proteins on the lagging strand to recycle.  相似文献   

15.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

16.
UVM is an SOS-independent inducible response characterized by elevated mutagenesis at a site-specific 3, N4-ethenocytosine (epsilonC) residue borne on M13 single-stranded DNA transfected into Escherichia coli cells pretreated with DNA-damaging agents. By constructing and using E. coli strain AM124 (polA polB umuDC dinB lexA1[Ind-]), we show here that the UVM response is manifested in cells deficient for SOS induction, as well as for all four of the 'non-replicative' DNA polymerases, namely DNA polymerase I (polA), II (polB), IV (dinB) and V (umuDC). These results confirm that UVM represents a novel, previously unidentified cellular response to DNA-damaging agents. To address the question as to whether the UVM response is accompanied by an error-prone DNA replication activity, we applied a newly developed in vitro replication assay coupled to an in vitro mutation analysis system. In the assay, circular M13 single-stranded DNA bearing a site-specific lesion is converted to circular double-stranded replicative-form DNA in the presence of cell extracts and nucleotide precursors under conditions that closely mimic M13 replication in vivo. The newly synthesized (minus) DNA strand is selectively amplified by ligation-mediated polymerase chain reaction (LM-PCR), followed by a multiplex sequence analysis to determine the frequency and specificity of mutations. Replication of DNA bearing a site-specific epsilonC lesion by cell extracts from uninduced E. coli AM124 cells results in a mutation frequency of about 13%. Mutation frequency is elevated fivefold (to 58%) in cell extracts from UVM-induced AM124 cells, with C --> A mutations predominating over C --> T mutations, a specificity similar to that observed in vivo. These results, together with previously reported data, suggest that the UVM response is mediated through the induction of a transient error-prone DNA replication activity and that a modification of DNA polymerase III or the expression of a previously unidentified DNA polymerase may account for the UVM phenotype.  相似文献   

17.
Bacteriophage T4 gene 1 and 42 amber mutants (defective in deoxynucleoside monophosphate kinase and deoxycytidylate hydroxymethylase, respectively) are able to synthesize DNA in cell-free lysates prepared as described by Barry and Alberts (1972), in contrast to their inabliity to do so in plasmolyzed and toluenized cell systems. Addition of extracts containing an active gene 1 or 42 product has no effect on synthesis in lysates defective in the respective gene. Thus, if these enzymes do play additional direct roles in replication, these roles are not manifest in the lysed-cell system. The gene 42 mutant am N122/m, a double mutant bearing an additional defect in DNA polymerase, is unable to synthesize DNA in these lysates. This inability is overcome by addition of extracts containing an active T4 DNA polymerase. m is a leaky amber mutation which reduces DNA polymerase activity to a very low level. However, this level is high enough to allow positive genetic complementation tests with gene 43 mutants. Two other gene 42 amber mutants contain additional defects: am 269 induces only half the normal level of DNA polymerase, and am C87 fails to induce a detectable level of thymidylate synthetase. These defects do not result from pleiotropic effects of the gene 42 mutations. In plasmolyzed cells, temperature-sensitive gene 42 mutants fail to synthesize DNA under conditions where replication forks and 5-hydroxymethyl-dCTP are present. This supports the idea that the gene 42 protein is directly involved in DNA synthesis.  相似文献   

18.
Bacteriophage T4 DNA replication initiates from origins at early times of infection and from recombinational intermediates as the infection progresses. Plasmids containing cloned T4 origins replicate during T4 infection, providing a model system for studying origin-dependent replication. In addition, recombination-dependent replication can be analyzed by using cloned nonorigin fragments of T4 DNA, which direct plasmid replication that requires phage-encoded recombination proteins. We have tested in vivo requirements for both plasmid replication model systems by infecting plasmid-containing cells with mutant phage. Replication of origin and nonorigin plasmids strictly required components of the T4 DNA polymerase holoenzyme complex. Recombination-dependent plasmid replication also strictly required the T4 single-stranded DNA-binding protein (gene product 32 [gp32]), and replication of origin-containing plasmids was greatly reduced by 32 amber mutations. gp32 is therefore important in both modes of replication. An amber mutation in gene 41, which encodes the replicative helicase of T4, reduced but did not eliminate both recombination- and origin-dependent plasmid replication. Therefore, gp41 may normally be utilized for replication of both plasmids but is apparently not required for either. An amber mutation in gene 61, which encodes the T4 RNA primase, did not eliminate either recombination- or origin-dependent plasmid replication. However, plasmid replication was severely delayed by the 61 amber mutation, suggesting that the protein may normally play an important, though nonessential, role in replication. We deleted gene 61 from the T4 genome to test whether the observed replication was due to residual gp61 in the amber mutant infection. The replication phenotype of the deletion mutant was identical to that of the amber mutant. Therefore, gp61 is not required for in vivo T4 replication. Furthermore, the deletion mutant is viable, demonstrating that the gp61 primase is not an essential T4 protein.  相似文献   

19.
Sequence-specific pausing occurs during DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase holoenzyme in the presence of the T4 helix destabilizing protein (gene 32 protein). Two of the six strongest pause sites on a double-stranded bacteriophage fd DNA template are in regions where hairpin helices are predicted to form when the DNA is single stranded. However, the other pause sites are in regions that are not obviously involved in secondary structure. The positions of the DNA chain ends produced at one pause site of each type were determined to within +/- 2 nucleotides. At this resolution, a clustering of sites is observed, suggesting that the polymerase holoenzyme may become destabilized when moving along selected regions of the DNA and then pause at one or more of several closely spaced positions. The addition of the T4 gene 41 protein (a DNA helicase that forms part of the T4 primosome) to the above replication system greatly increases the rate of fork movement and eliminates detectable pausing. In contrast, the addition of the T4 dda protein (a second DNA helicase that increases the rate of fork movement to a similar extent) has no affect on replication fork pausing. This difference could either be due to specific protein-protein interactions formed between the polymerase holoenzyme and the 41 protein or to the highly processive movement of the 41 protein along the displaced DNA strand.  相似文献   

20.
The replication of simian virus 40 has been studied by using cell-free extracts derived from human 293 cells. Fractionation of this extract has led to the identification of three fractions that are required for efficient DNA synthesis. Initial fractionation of the crude extract by phosphocellulose chromatography has produced two fractions, I and II, neither of which is able to support replication separately, but when they are combined, efficient synthesis is restored. Both fractions are required, with SV40 T antigen, for the formation of a presynthesis complex at the SV40 origin. The major replication enzymes, DNA polymerase, DNA primase and the topoisomerases I and II all reside in fraction II. Fraction I has been subdivided into two subfractions (A and B) by DEAE-cellulose chromatography. Fraction A is essential for replication and is required for presynthesis complex formation. Fraction B stimulates DNA replication and is only required at the elongation stage. This multicomponent system has provided the foundation for identification of individual components that are required for DNA replication in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号