首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage FC3-1 is one of several specific bacteriophages of Klebsiella pneumoniae C3 isolated in our laboratory. Unlike receptors for other Klebsiella phages, the bacteriophage FC3-1 receptor was shown to be lipopolysaccharide, specifically the polysaccharide fraction (O-antigen and core region). We concluded that capsular polysaccharide, outer membrane proteins, and lipid A were not involved in phage binding. Mutants resistant to this phage were isolated and were found to be devoid of lipopolysaccharide O-antigen by several criteria but to contain capsular material serologically identical to that of the wild type. The polysaccharide fraction was concluded to be the primary phage receptor, indicating that it is available to the phage.  相似文献   

2.
FC3-10 is a Klebsiella spp. specific bacteriophage isolated on a rough mutant (strain KT707, chemotype Rd) of K. pneumoniae C3. The bacteriophage receptor for this phage was shown to be the low-molecular mass lipopolysaccharide (LPS) fraction (LPS-core oligosaccharides), specifically the heptose content of the LPS inner-core. This is the first phage isolated on Klebsiella, the receptor for which is the LPS-core. This phage was unable to plate on Salmonella typhimurium LPS mutants with chemotypes Rd2 or Re showing incomplete or no heptose content on their LPS-core, respectively. Spontaneous phage-resistant mutants from different Klebsiella strains were deep-rough LPS mutants or encapsulated revertants from unencapsulated mutant strains.  相似文献   

3.
H Shin  JH Lee  H Kim  Y Choi  S Heu  S Ryu 《PloS one》2012,7(8):e43392

Background

Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated.

Methodology/Principal Findings

Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain.

Conclusions/Significance

In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.  相似文献   

4.
The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-d-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.  相似文献   

5.

Background

Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of RhaIII, in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome.

Results

In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a.

Conclusions

This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-742) contains supplementary material, which is available to authorized users.  相似文献   

6.
Mineral acid hydrolysis of the lipopolysaccharide from Vibrio cholerae 569B (Inaba) gives an oligosaccharide fraction which was shown, by use of 13C NMR and chemical methods, to be a regular α-(1 → 2) linked chain of d-perosamine (4-amino-4,6-dideoxy-d-mannose) units. This chain represents the O-antigen of the lipopolysaccharide, in which the amino functions are acylated with 3-hydroxypropionyl groups. The chromatographic properties of some hydroxamic acids are described and used to characterize these acyl groups.  相似文献   

7.
High-molecular weight lipopolysaccharide (O antigen enriched fraction) from Klebsiella pneumoniae was determined to be the receptor for bacteriophage FC3-1. A methodology for the identification of the lipopolysaccharide component involved in FC3-1 bacteriophage reception was used that is suitable for other phages and host bacteria.  相似文献   

8.
O antigen (O polysaccharide) is an important and highly variable cell component present on the surface of cells which defines the serospecificity of Gram-negative bacteria. Most O antigens of Shigella flexneri, a cause of shigellosis, share a backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various substituents, giving rise to 19 serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, two new O-antigen modifications, namely, O-acetylation at position 3 or 4 of RhaIII and position 6 of GlcNAc, have been identified in several S. flexneri serotypes. In this work, the genetic basis for the 3/4-O-acetylation on RhaIII was elucidated. Bioinformatic analysis of the genome of S. flexneri serotype 2a strain Sf301, which carries 3/4-O-acetylation on RhaIII, revealed an O-acyltransferase gene designated oacB. Genetic studies combined with O-antigen structure analysis demonstrated that this gene is responsible for the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not serotype 6, which has a different O-antigen backbone structure. The oacB gene is carried by a transposon-like structure located in the proA-adrA region on the chromosome, which represents a novel mechanism of mobilization of O-antigen modification factors in S. flexneri. These findings enhance our knowledge of S. flexneri O-antigen modifications and shed light on the origin of new O-antigen variants.  相似文献   

9.
The genomes of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses) were sequenced and analyzed from an evolutionary perspective. The genome-based phylogeny and genome analyses of phages S25-3 and S25-4 showed that they had diverged evolutionarily from the majority of this viral genus based on the presence of mobile genetic elements, i.e., a putative transposase and the homing endonuclease I-MsaI. These results suggest that genetic elements such as transposases and homing endonucleases are likely to be involved with the evolution of some Twort-like phages, including phages S25-3 and S25-4.  相似文献   

10.
The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvAB OFF and opvAB ON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvAB OFF subpopulation is killed and the opvAB ON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvAB OFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only.  相似文献   

11.
The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1→2) and α-(1→3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and A<M) epitopes relevant in serodiagnosis and typing. We report that, in contrast to the B. suis biovar 1 O-antigen used as a reference or to all described Brucella O-antigens, B. suis biovar 2 O-antigen failed to bind monoclonal antibodies of C (A = M), C (M>A) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1→2)-linkages. By 13C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1→3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1→3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.  相似文献   

12.
Probiotics have known efficacy as dietary supplements. Here, Lactobacillus strain F113 was characterized for probiotic use. Strain FC113 was selected as having the highest phytase activity (403.6 U) among tested strains showing acid tolerance and nitrite production. FC113 was tentatively identified as Lactobacillus salivarius based on an API 50 CHL assay and 16S rRNA gene analysis. The production of interleukin (IL)-1α and tumor necrosis factor (TNF)-α was measured in in vitro culture experiments. Cytokine production by L. salivarius FC113 at 1?×?107 CFU/ml was approximately 175.5?±?36.40 pg/mL IL-1α and 353.5?±?61.79 pg/mL TNF-α. L. salivarius FC113 was profoundly resistant to artificial gastric juice (pH 2.5, 1 % pepsin), and persisted for 24 h in artificial bile acid. According to results obtained with an API ZYM kit, L. salivarius FC113 did not generate carcinogenic enzymes. L. salivarius F113 had an inhibitory effect on food-borne pathogens, and adhered strongly to HT-29 human intestinal epithelial cell lines. These results show that L. salivarius FC113 has probiotic characteristics, and exhibits high feed bioavailability in the host animal, in addition to an immune-stimulating effect.  相似文献   

13.
The O-antigen is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in its pathogenicity. Composition and structure of the O-antigens of Escherichia coli are highly diverse mainly due to genetic variations in the O-antigen gene cluster. In this work, the chemical structure and the gene cluster of the O-antigen of E. coli O161 were studied. Chemical degradations, sugar analyses, and NMR spectroscopy showed that the O161 antigen possesses a trisaccharide O-repeating unit containing a 5-N-acetyl-7-N-(d-alanyl) derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7Ala) and having the following structure:
→8)-α-Legp5Ac7Ala-(2→4)-β-d-GlcpA-(1→3)-β-d-GlcpNAc-(1→  相似文献   

14.
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.  相似文献   

15.
Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Roberts MR  Bowles DJ 《Plant physiology》1999,119(4):1243-1250
Fusicoccin (FC) is a fungal toxin that activates the plant plasma membrane H+-ATPase by binding with 14-3-3 proteins, causing membrane hyperpolarization. Here we report on the effect of FC on a gene-for-gene pathogen-resistance response and show that FC application induces the expression of several genes involved in plant responses to pathogens. Ten members of the FC-binding 14-3-3 protein gene family were isolated from tomato (Lycopersicon esculentum) to characterize their role in defense responses. Sequence analysis is suggestive of common biochemical functions for these tomato 14-3-3 proteins, but their genes showed different expression patterns in leaves after challenges. Different specific subsets of 14-3-3 genes were induced after treatment with FC and during a gene-for-gene resistance response. Possible roles for the H+-ATPase and 14-3-3 proteins in responses to pathogens are discussed.  相似文献   

16.
The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions.  相似文献   

17.
18.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   

19.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   

20.
Mild acid hydrolysis of the lipopolysaccharide produced by Escherichiacoli O118:H16 standard strain (NRCC 6613) afforded an O-polysaccharide (O-PS) composed of d-galactose, 2-acetamidoylamino-2,6-dideoxy-l-galactose , 2-acetamido-2-deoxy-d-glucose, ribitol, and phosphate (1:1:1:1:1). From DOC-PAGE, sugar and methylation analyses, one- and two-dimensional NMR spectroscopy, capillary electrophoresis-mass spectrometry, hydrolysis, and sequential Smith-type periodate oxidation studies, the O-PS was determined to be an unbranched linear polymer having the structure:[6)-α-d-Galp-(1→3)-α-l-FucpNAm-(1→3)-β-d-GlcpNAc-(1→3)-Rib-ol-5-P-(O→]nThe structure of the O-PS is consistent with the reported DNA data on the O-antigen gene-cluster of E. coli O118 and interestingly, the O-PS is similar to the structures of the O-antigens of Salmonellaenterica O47 and E. coli O151:H10 reference strain 880-67, as predicted from the results of DNA sequencing of their respective O-antigen gene-clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号