首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
EtOH exposure in male rats increases corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus (PVN), a brain region responsible for coordinating stress and anxiety responses. In this study we identified the molecular mechanisms involved in mediating these effects by examining the direct effects of EtOH on CRH promoter activity in a neuronal cell line derived from the PVN (IVB). In addition, we investigated the potential interactions of EtOH and glucocorticoids on the CRH promoter by concomitantly treating cells with EtOH and the glucocorticoid receptor (GR) antagonist RU486, and by sequentially deleting GR binding sites within glucocorticoid response element (GRE) on the CRH promoter. Cells were transiently transfected with a firefly luciferase reporter construct containing 2.5 kb of the rat wild type (WT) or mutated CRH promoter. Our results showed that EtOH treatment induced a biphasic response in CRH promoter activity. EtOH exposure for 0.5 h significantly decreased promoter activity compared to vehicle treated controls, whereas promoter activity was significantly increased after 2.0 h of EtOH exposure. Treatment with RU486, or deletion of the GR binding sites 1 and 2 within the GRE, abolished the EtOH-induced increase in the promoter activity, however did not affect EtOH-induced decrease in CRH promoter activity at an earlier time point. Overall, our data suggest that alcohol exposure directly regulates CRH promoter activity by interfering with the normal feedback mechanisms of glucocorticoids mediated by GR signaling at the GRE site of the CRH promoter.  相似文献   

7.
8.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements.  相似文献   

16.
17.
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta.  相似文献   

18.
The hypothalamic peptide hormone TRH is also found in other tissues, including the thyroid. While TRH may be regulated by T3 in the hypothalamus, other regulators of TRH have not been identified and the regulation of TRH in nonhypothalamic tissues is unknown. We recently demonstrated the biosynthesis of TRH in the CA77 neoplastic thyroidal C cell line. We studied the regulation of TRH by dexamethasone in this cell line because glucocorticoids have been postulated to inhibit TSH secretion by decreasing TRH in the hypothalamus. Furthermore, TRH in the thyroid inhibits thyroid hormone release. Thus by regulating thyroidal TRH, glucocorticoids could also directly affect thyroid hormone secretion. Treatment of CA77 cells for 4 days with dexamethasone produced dose-dependent increases in both TRH mRNA and cellular and secreted TRH. Increases in TRH mRNA and peptide levels could be seen with 10(-9) M dexamethasone. A 4.8-fold increase in TRH mRNA and a 4-fold increase in secreted peptide were seen with 10(-7) M dexamethasone. Dexamethasone treatment did not increase beta-actin mRNA levels or cell growth. These results suggest that glucocorticoids may be physiological regulators of TRH in normal C cells. In addition to their inhibitory effects on TSH, glucocorticoids may decrease thyroid hormone levels by increasing thyroidal TRH. Since the glucocorticoid effects on C cell TRH are the converse of what is expected for hypothalamic TRH, glucocorticoid effects in these two tissues may be mediated by different regulators.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号