首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Autolytic processing of a phosphorothioate diester bond.   总被引:12,自引:11,他引:1       下载免费PDF全文
A small satellite RNA of tobacco ringspot virus replicates in tissues infected with tobacco ringspot virus and accumulates in virus capsids, forming virus-like particles. Previous research showed that multimeric forms of this satellite RNA have tandem repeats of the "monomeric" satellite RNA sequence of 359 or 360 nucleotide residues. The multimeric RNAs undergo autolytic processing at a specific CpA phosphodiester bond, the junction, to generate the monomeric RNA. We substituted phosphorothioate diester bonds for various sets of phosphodiester bonds, in dimeric and truncated forms of the satellite RNA. The degree of reduction in autolytic cleavage varied both with the sites of substitution and the size of the RNA molecules. Analyses of a product of the autolysis reaction suggest that one phosphorothioate diester bond most strongly interferes with processing, the one introduced at the CpA junction during its synthesis from adenosine-5'-0-(1-thiotriphosphate). However, extensive introduction of phosphorothioate diester bonds elsewhere in the molecule also decreased processing, possibly by altering conformation.  相似文献   

3.
Human immunodeficiency virus type 1 encapsidates two copies of viral genomic RNA in the form of a dimer. The dimerization process initiates via a 6-nucleotide palindrome that constitutes the loop of a viral RNA stem-loop structure (i.e., stem loop 1 [SL1], also termed the dimerization initiation site [DIS]) located within the 5' untranslated region of the viral genome. We have now shown that deletion of the entire DIS sequence virtually eliminated viral replication but that this impairment was overcome by four second-site mutations located within the matrix (MA), capsid (CA), p2, and nucleocapsid (NC) regions of Gag. Interestingly, defective viral RNA dimerization caused by the DeltaDIS deletion was not significantly corrected by these compensatory mutations, which did, however, allow the mutated viruses to package wild-type levels of this DIS-deleted viral RNA while excluding spliced viral RNA from encapsidation. Further studies demonstrated that the compensatory mutation T12I located within p2, termed MP2, sufficed to prevent spliced viral RNA from being packaged into the DeltaDIS virus. Consistently, the DeltaDIS-MP2 virus displayed significantly higher levels of infectiousness than did the DeltaDIS virus. The importance of position T12 in p2 was further demonstrated by the identification of four point mutations,T12D, T12E, T12G, and T12P, that resulted in encapsidation of spliced viral RNA at significant levels. Taken together, our data demonstrate that selective packaging of viral genomic RNA is influenced by the MP2 mutation and that this represents a major mechanism for rescue of viruses containing the DeltaDIS deletion.  相似文献   

4.
The dimerization initiation site (DIS), downstream of the long terminal repeat within the human immunodeficiency virus type 1 (HIV-1) genome, can form a stem-loop structure (SL1) that has been shown to be involved in the packaging of viral RNA. In order to further determine the role of this region in the virus life cycle, we deleted the 16 nucleotides (nt) at positions +238 to +253 within SL1 to generate a construct termed BH10-LD3 and showed that this virus was impaired in viral RNA packaging, viral gene expression, and viral replication. Long-term culture of these mutated viruses in MT-2 cells, i.e., 18 passages, yielded revertant viruses that possessed infectivities similar to that of the wild type. Cloning and sequencing showed that these viruses retained the original 16-nt deletion but possessed two additional point mutations, which were located within the p2 and NC regions of the Gag coding region, respectively, and which were therefore named MP2 and MNC. Site-directed mutagenesis studies revealed that both of these point mutations were necessary to compensate for the 16-nt deletion in BH10-LD3. A construct with both the 16-nt deletion and the MP2 mutation, i.e., LD3-MP2, produced approximately five times more viral protein than BH10-LD3, while the MNC mutation, i.e., construct LD3-MNC, reversed the defects in viral RNA packaging. We also deleted nt +261 to +274 within the 3′ end of SL1 and showed that the diminished infectivity of the mutated virus, termed BH10-LD4, could also be restored by the MP2 and MNC point mutations. Therefore, compensatory mutations within the p2 and NC proteins, distal from deletions within the DIS region of the HIV genome, can restore HIV replication, viral gene expression, and viral RNA packaging to control levels.  相似文献   

5.
6.
The dimerization initiation site (DIS) and the dimer linkage sequences (DLS) of human immunodeficiency virus type 1 have been shown to mediate in vitro dimerization of genomic RNA. However, the precise role of the DIS-DLS region in virion assembly and RNA dimerization in virus particles has not been fully elucidated, since deletion or mutation of the DIS-DLS region also abolishes the packaging ability of genomic RNA. To characterize the DIS-DLS region without altering packaging ability, we generated mutant constructs carrying a duplication of approximately 1,000 bases including the encapsidation signal and DIS-DLS (E/DLS) region. We found that duplication of the E/DLS region resulted in the appearance of monomeric RNA in virus particles. No monomers were observed in virions of mutants carrying the E/DLS region only at ectopic positions. Monomers were not observed when pol or env regions were duplicated, indicating an absolute need for two intact E/DLS regions on the same RNA for generating particles with monomeric RNA. These monomeric RNAs were most likely generated by intramolecular interaction between two E/DLS regions on one genome. Moreover, incomplete genome dimerization did not affect RNA packaging and virion formation. Examination of intramolecular interaction between E/DLS regions could be a convenient tool for characterizing the E/DLS region in virion assembly and RNA dimerization within virus particles.  相似文献   

7.
8.
9.
The rate of insertion and deletion mutations of the replicase of Cucumber mosaic virus (CMV) was determined in planta by using a parasitic satellite RNA (satRNA) as a reporter. We found that the CMV replicase had different fidelity in different environments, with important implications in viral disease evolution. Insertions were very rare events, irrespective of the region of the satRNA genome assayed and independent of the hosts tested. On the other hand, deletion events were more frequent but were restricted to a highly structured region of the reporter. Deletion mutation rates were different for the two hosts tested, although the mutation distribution was not influenced by the hosts. Moreover, hot spots with high mutation rates were identified on the satRNA genome.  相似文献   

10.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.  相似文献   

11.
Pantaleo V  Burgyán J 《Journal of virology》2008,82(23):11851-11858
Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24°C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.  相似文献   

12.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

13.
G Wu  J M Kaper  E M Jaspars 《FEBS letters》1991,292(1-2):213-216
An RNA-dependent RNA polymerase purified from tobacco infected with cucumber mosaic virus catalyzes the synthesis of (-) and (+) strands of the viral satellite RNA, CARNA 5, but fails to replicate the satellite RNA of peanut stunt virus (PSV). The enzyme replicates the genomic RNAs of the three principal cucumoviruses CMV, PSV and tomato aspermy virus (TAV) with varying efficiencies. The specificity with which CMV RdRp replicates different sequence-unrelated RNA templates suggests that the site of their recognition requires secondary or higher level structural organization.  相似文献   

14.
15.
The satellite RNA of tobacco ringspot virus (STobRV RNA) replicates and becomes encapsidated in association with tobacco ringspot virus. Previous results show that the infected tissue produces multimeric STobRV RNAs of both polarities. RNA that is complementary to encapsidated STobRV RNA, designated as having the (-) polarity, cleaves autolytically at a specific ApG bond. Purified autolysis products spontaneously join in a non-enzymic reaction. We report characteristics of this RNA ligation reaction: the terminal groups that react, the type of bond in the newly formed junction and the nucleotide sequence of the joined RNA. The nucleotide sequence of the ligated RNA shows that joining of the reacting RNAs restored an ApG bond. The junction ApG has a 3'-to-5' phosphodiester bond. Thus the net ligation reaction of STobRV (-)RNA is the precise reversal of autolysis. We discuss this new type of RNA ligation reaction and its implications for the formation of multimeric STobRV RNAs during replication.  相似文献   

16.
17.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

18.
以甜菜坏死黄脉病毒内蒙分离物(BNYVV NM)总RNA为模板,经RT-PCR扩增,分别获得RNA2、RNA3和RNA4自然缺失突变体cDNA克隆。序列分析结果表明,RNA2自然缺失突变体在75kD通读蛋白编码区C端缺失348个核苷酸(缺失位置nt1488 ̄nt1835)。RNA3在其25kD蛋白编码区内缺失360个核苷酸(缺失位置nt729 ̄nt1088)。RNA4的自然缺失区域位于31kD蛋白  相似文献   

19.
The Asian-specific 9-bp deletion between the genes for mitochondrial cytochrome oxidase II and lysine transfer RNA has been used to trace aboriginal human movements out of Southeast Asia and into portions of the South Pacific. Although it has been used to estimate the number of independent lineages that occur in the New World, it has not been studied in native peoples of the Beringian region. Thus, we have used PCR to amplify and compare the lengths of DNA segments surrounding this deletion in native peoples of Beringia and the adjacent regions, as well as natives of the Altai Mountains of Southwestern Siberia. Of the 176 individuals analyzed here, the deletion was found in only 3 of 25 individuals from the Ust-Kan region of the Altai Mountains. We comment on the distribution of this marker and on potential relationships between Beringians and other Native American groups in which this marker has been surveyed. One Chukchi possessed three copies of the 9-bp sequence, which suggests (1) that the number of copies of this sequence in humans may be more variable than had been believed and (2) that a mechanism of replication based on tandem duplication may be a potential explanation for the origin of this length mutation in humans.  相似文献   

20.
Mutational analysis of upstream AUG codons of poliovirus RNA.   总被引:31,自引:19,他引:12       下载免费PDF全文
The 5' untranslated region of poliovirus type 2 Lansing RNA consists of 744 nucleotides containing seven AUG codons which are followed by in-frame termination codons, thus forming short open reading frames (ORFs). To determine the biological significance of these small ORFs, all of the upstream AUG codons were mutated to UUG. The point mutations were introduced into an infectious poliovirus cDNA clone, and RNA transcribed in vitro from the altered cDNA was transfected into HeLa cells to recover the virus. Mutation of AUG 7 resulted in a virus (called R2-5NC-14) with a small-plaque phenotype, whereas mutation of the other six AUG codons produced virus with a wild-type plaque morphology. To determine whether the small-plaque phenotype of R2-5NC-14 was due to altered translational efficiency of the viral mRNA, we constructed chimeric mRNAs containing the 5' noncoding region of poliovirus mRNA fused to the chloramphenicol acetyltransferase (CAT) coding sequence. mRNA containing a mutated AUG 7 codon showed decreased translational efficiency in vitro. The results indicate that the upstream ORFs of poliovirus RNA are not essential for viral replication and do not act as barriers to the translation of poliovirus mRNA. AUG 7 and flanking sequences may play a positive acting role in poliovirus RNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号