首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanogenesis in the ink gland of Sepia officinalis   总被引:1,自引:0,他引:1  
Among the various melanin-producing systems, the ink gland of the cuttlefish (Sepia officinalis) has traditionally been regarded as a most convenient model system for the studies of melanogenesis. The ink gland is a highly specialized organ with immature cells in the inner portion, from where the cells gradually mature, migrate towards the outer portion of the gland and become competent to produce melanin giving rise to particulate melanosomes. When cell maturation is complete, melanin is secreted into the lumen of the gland, accumulated into the ink sac and ejected on demand. Biochemical studies carried out over the past two decades have shown that the ink gland contains a variety of melanogenic enzymes, including tyrosinase, a peculiar dopachrome rearranging enzyme (which catalyses the rearrangement of dopachrome to 5,6-dihydroxyindole) and a peroxidase (presumably involved in the later stages of melanin biosynthesis). These enzymes are functionally interactive in close subcellular compartments of ink gland cells and appear to act in a concerted fashion during the process of melanogenesis in the mature portion of the gland. More recent studies have revealed that ink production and ejection are affected and modulated by the N-methyl-D-aspartate (NMDA)-nitric oxide (NO)-cyclic GMP (cGMP) signalling pathway. Glutamate NMDA receptor and NO synthase, the enzyme responsible for the synthesis of NO, have been detected by biochemical and immunohistochemical techniques in immature ink gland cells. Stimulation of NMDA receptors caused a marked elevation of cGMP levels, activation of tyrosinase and increased melanin synthesis in the mature portion of the gland, via the NO-guanylyl cyclase interaction. This signalling is also present in different regions of the nervous system in Sepia and in certain neural pathways controlling contraction of the ink sac sphincters and wall muscle in the ejection mechanism. Overall, these and other findings allowed elaboration of an improved model of melanin formation in Sepia, which underscores the complex interplay of melanogenic enzymes and regulatory factors, highlighting both the similarities and the differences with melanogenesis in mammals.  相似文献   

2.
The tyrosinase-catalyzed conversion of l-tyrosine to melanin represents the most distinctive biochemical pathway in the ink gland of the cuttlefish Sepia officinalis; however, the molecular mechanisms underlying its activation have remained so far largely uncharted. In this paper we demonstrate for the first time that l-glutamate can stimulate tyrosinase activity and promote melanin synthesis in Sepia ink gland via the N-methyl-d-aspartate (NMDA) receptor/NO/cGMP signal transduction pathway. Incubation of intact ink glands with either l-glutamate or NMDA resulted in an up to 18-fold increase of tyrosinase activity and a more than 6-fold elevation of cGMP levels. Comparable stimulation of tyrosinase was induced by an NO donor and by 8-bromo-cGMP. An NMDA receptor antagonist, NO synthase (NOS) inhibitors, and a guanylate cyclase blocker suppressed NMDA-induced effects. Immunohistochemical evidence indicated that enhanced cGMP production was localized largely in the mature part of the ink gland. Increased de novo synthesis of melanin was demonstrated in NMDA- and NO-stimulated ink glands by a combined microanalytical approach based on spectrophotometric determination of pigment levels and high performance liquid chromatography quantitation of pyrrole-2,3, 5-tricarboxylic acid, a specific melanin marker, in melanosome-containing fractions. These results fill a longstanding gap in the understanding of the complex biochemical mechanisms underlying activation of melanogenesis in the mature ink gland cells of S. officinalis and disclose a novel physiologic role of the excitatory neurotransmitter glutamate mediated by the NMDA receptor/NO/cGMP signaling pathway.  相似文献   

3.
Biochemical and immunohistochemical evidence is reported, showing basal protein nitration in specific regions of the optic lobes of Sepia officinalis, mainly in the fiber layers of the plexiform zone. SDS-PAGE analysis of optic lobe extracts revealed an intense 3-nitrotyrosine immunoreactive band identified as alpha-tubulin by immunoprecipitation and partial purification. Stimulation of NMDA receptors resulted in a selective decrease in alpha-tubulin levels within 30 min with partial recovery after 4 h. The effect was suppressed by the NO synthase (NOS) inhibitor L-nitroarginine. Incubation of optic lobes with free 3-nitrotyrosine resulted likewise in a selective loss of alpha-tubulin, due apparently to incorporation of the amino acid into the C-terminus of detyrosinated alpha-tubulin to give the nitrated protein purportedly more susceptible to degradation. Overall, these results point to a novel potential physiologic role of NO and free 3-nitrotyrosine in the control of the alpha-tubulin tyrosination/detyrosination cycle and turnover in Sepia nervous tissue.  相似文献   

4.
The melanin-free ink of the cephalopod Sepia officinalis is shown to contain a heat labile proteinaceous component toxic to a variety of cell lines, including PC12 cells. Gel filtration chromatography indicated that the toxic component was concentrated in those fractions eluted at a molecular weight higher than 100 kDa and exhibiting the highest tyrosinase activity. SDS-PAGE analysis of the active fractions displayed a single major band migrating at an approximate molecular weight of 100 kDa, identical with that of the single tyrosinase band in the melanin-free ink. These data unambiguously demonstrated the identity of the toxic component with tyrosinase. Treatment of purified Sepia as well as of mushroom tyrosinase with an immobilized version of proteinase K resulted in a parallel loss of tyrosinase activity and cytotoxicity. Sepia apotyrosinase was ineffective in inducing cytotoxicity in PC12 cells. Purified Sepia tyrosinase was found to induce a significant increase in caspase 3 activity in PC12 cells, leading eventually to an irreversible apoptotic process. Overall, these results disclose a hitherto unrecognized property of tyrosinase that may lead to a reappraisal of its biological significance beyond that of a mere pigment producing enzyme.  相似文献   

5.
采用火焰光度计测定法,对虎斑乌贼(Sepia pharaonis)、金乌贼(Sepia esculenta)、拟目乌贼(Sepial ycidas)、日本无针乌贼(Sepiella japonica)、柏氏四盘耳乌贼(Euprymna berryi)(乌贼目)、剑尖枪乌贼(Uroteuthis edulis)(枪形目)和弯斑蛸(Octopus dollfusi)(八腕目)等7种头足类动物墨汁中的钠、钾含量进行了检测.结果显示:乌贼目墨汁的钠含量比八腕目和枪形目高.五种乌贼目动物中,金乌贼与拟目乌贼、日本无针乌贼、柏氏四盘耳乌贼,拟目乌贼与虎斑乌贼,虎斑乌贼与日本无针乌贼的墨汁钠含量存在显著的差异(P<0.05),其余的组合无显著差异.不同目的动物墨汁的钾含量无明显的差异.  相似文献   

6.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

7.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

8.
The structure of melanin extracted from the ink sac of the cuttlefish Sepia officinalis was examined for different methods of isolation and purification of the pigment. Scanning electron microscopy (SEM) images of Sepia eumelanin prepared by different procedures establish that multi-microm-sized aggregates reported by previous workers are generated by their sample preparation, and that the dominant constituents of Sepia melanin are approximately 150 nm spherical granules. Brunauer-Emmett-Teller (BET) measurements reveal that Sepia eumelanin from Sigma (prepared by spray drying the pigment) has a surface area of 14.3 m2/g. Pigment extracted directly from the fresh ink sac and then freeze-dried has a surface area of 21.5 m2/g, while CO2-supercritically dried has a surface area of 37.5 m2/g. This is consistent with SEM images showing that the process of freeze-drying produces aggregates, but to a lesser extent than spray drying. Supercritical drying of the sample produces suspensions of the individual approximately 150 nm granule, which is more reflective of the natural pigment. Brunauer-Emmett-Teller surface area analysis and Barrett-Joyner-Halenda (BJH) pore volume analysis indicate that the surface of the granules is not smooth and the interior of the granules is not porous, but rather the aggregates of granules are porous. Ultra-high resolution SEM and atomic force microscopy (AFM) images show the granules are easily deformed and are comprised of smaller constituents. De-aggregation of the granules by sonication and ultra-filtration reveal a range of structures depending on the pore size of the membrane used. The implications of these results on quantifying photochemical properties and kinetic reaction rate constants of melanin are discussed.  相似文献   

9.
Abstract: Nitric oxide synthase (NOS) in the snail Helix pomatia was characterized by biochemical and molecular biological techniques and localized by histochemical methods. Central ganglia contained particulate paraformaldehyde-sensitive and cytosolic paraformaldehyde-insensitive NADPH-diaphorase. The cytosolic NADPH-diaphorase activity coeluted with NOS activity. The activity of NOS was dependent on Ca2+ and NADPH and was inhibited by N G-nitro- l -arginine ( l -NNA). Proteins purified by 2',5'-ADP affinity chromatography were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and migrated at 150, 60, 40, and 30 kDa. An antibody to mammalian NOS exclusively labeled the 60-kDa protein. Characterization of the cDNA of the corresponding 60-kDa NOS-immunoreactive protein revealed no sequence homology with any known NOS isoform. The recombinant protein exhibited Ca2+- and NADPH-dependent NOS activity, which was partially inhibited by EGTA and l -NNA. Histochemistry showed NADPH-diaphorase activity in discrete regions of the central and peripheral nervous system. About 60% of the NADPH-diaphorase-positive neurons colocalize with immunoreactive material detected by antibodies to mammalian NOS. Comparison of organs showed the highest NADPH-diaphorase activity in the nervous system, whereas moderate activity was present in muscle tissue, digestive tract, and gonads. Our study suggests the presence of NOS and a putative NOS-associated/regulating protein in mollusk nervous tissue.  相似文献   

10.
The optical and paramagnetic properties of size-controlled ink particles isolated from ink sacs of Sepia officinalis were investigated. Topographic images of atomic force microscopy (AFM) revealed that the average heights of the large and small ink particles were 156 nm and 5.3 nm respectively. The ultraviolet-visible (UV-VIS) spectral features of aqueous solutions of ink particles were dependent on particle size. Electron spin resonance (ESR) spectra suggested that the ink particles are highly pure for paramagnetic species and are of reliable quality. These size-controlled ink particles are suitable for a basic study of melanin-related materials.  相似文献   

11.
Nitric Oxide Synthase Activity in the Molluscan CNS   总被引:6,自引:0,他引:6  
Abstract: Putative nitric oxide synthase (NOS) activity was assayed in molluscan CNS through histochemical localization of NADPH-diaphorase and through measurement of l -arginine/ l -citrulline conversion. Several hundreds of NADPH-dependent diaphorase-positive neurons stained consistently darkly in the nervous system of the predatory opisthobranch Pleurobranchaea californica , whereas stained neurons were relatively sparse and/or light in the other opisthobranchs ( Philine, Aplysia, Tritonia, Flabellina, Cadlina, Armina, Coriphella , and Doriopsilla sp.) and cephalopods ( Sepia and Rossia sp.). l -Arginine/ l -citrulline conversion was β-NADPH dependent, insensitive to removal of Ca2+, inhibited by the calmodulin blocker trifluoperazine, and inhibited by the competitive NOS inhibitor N -nitro- l -arginine methyl ester ( l -NAME) but not d -NAME. Inhibitors of arginase [ l -valine and (+)- S -2-amino-5-iodoacetamidopentanoic acid)] did not affect l -citrulline production in the CNS. NOS activity was largely associated with the particulate fraction and appeared to be a novel, constitutive Ca2+-independent isoform. Enzymatic conversion of l -arginine/ l -citrulline in Pleurobranchaea and Aplysia CNS was 4.0 and 9.8%, respectively, of that of rat cerebellum. l -Citrulline formation in gill and muscle of Pleurobranchaea was not significant. The localization of relatively high NOS activity in neuron somata in the CNS of Pleurobranchaea is markedly different from the other opisthobranchs, all of which are grazers. Potentially, this is related to the animal's opportunistic predatory lifestyle.  相似文献   

12.
The idiosepiid cuttlefish is a suitable organism for behavioral, genetic, and developmental studies. As morphological bases for these studies, organization of the nervous system was examined in Idiosepius paradoxus Ortmann, 1881, using Cajal's silver technique and immunohistochemical staining with anti-acetylated alpha-tubulin antibody. The nervous architecture is generally identical to that described in Sepia and Loligo, but some features characterize the idiosepiid nervous system. The olfactory system is highly developed in the optic tract region. The dorsolateral lobes show large neuropils, connected with each other by a novel well-fasciculated commissure. Each olfactory lobe is subdivided into two lobules. The neuropils of the anterior and the posterior chromatophore lobes are very poorly developed. Neuronal gigantism is not extensive in the brain; enlarged neuronal cells are visible only in the perikaryal layer of the posterior subesophageal mass. The giant nerve fiber system is of the Sepia type; the axons are not markedly thick and the first-order giant fibers do not fuse with each other at the chiasma. Three-dimensional images by whole-mount immunostaining clarified the innervation pattern in the peripheral nervous system in detail. Two commissural fibers link the left and right posterior funnel nerves ventrally and dorsally. The stellate commissure, which is absent in Sepia and Sepiola, connects the stellate ganglia with each other. A branch of the visceral nerve innervating the median pallial adductor muscle is characteristically thick. Tubulinergic reactivity of the cilia and axons reveals the presence of many ciliated cells giving off an axon toward brain nerves in the surface of the funnel, head integument, arm tips, and epidermal lines. Some of these features seem to reflect the inactive nekto-benthic life of the idiosepiid cuttlefish in the eelgrass bed.  相似文献   

13.
The Notch signaling pathway is a vitally important pathway in regulating brain development. To explore the involvement of the Notch pathway in neuronal cells of adult rat gut, we investigated the expression of Notch1 and Jagged2 by in situ hybridization (ISH) and immunohistochemistry (IHC). In the enteric nervous system, Notch1 and Jagged2 were expressed in ganglia of the submucosal and myenteric plexus. Notch1 was preferentially expressed in cholinergic neurons lacking calretinin or nitric oxide synthase (NOS), whereas Jagged2 was present in most neuron subtypes. We propose that Notch1 and Jagged2 have a continuing role in the maintenance and function of neuronal cells in the adult enteric nervous system.  相似文献   

14.
Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)–interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus.  相似文献   

15.
The ink sac epithelium of the cuttlefish Sepia officinalis was investigated by electron microscopy. Melanogenesis in a simplified view seems to follow the general scheme of melanin formation in vertebrates. First, a membrane-bound protein matrix is formed, which is called an early stage melanosome. The early stage melanosomes are more or less irregular in shape with a size up to 1.5 μm and contain membranous, granular, or vesicular material. They seem to originate from Golgi bodies and/or endoplasmic reticulum. Membranes that frequently are present in the early stage melanosomes may originate from fusion of vesicles or from incorporation of Golgi membranes into early stage melanosomes. Free cytoplasmic material or mitochondria probably are also incorporated into the early stage melanosomes or melanosomes. Therefore, the origin of the early stage melanosomes seems to be similar to that of autophagosomes. The early stage melanosomes mature to melanosomes in which several dozen melanin granules are formed. These melanosomes, at last, release the melanin granules together with other cellular material, including early stage melanosomes, into the lumen of the ink gland. This finding confirms the earlier postulated holocrine character of the release. Active tyrosinase was localized in the lumen of the ink sac as already shown by biochemical methods. There was also additional evidence that most of the material of broken down cells inside the lumen of the ink sac seems to be converted into melanin granules.  相似文献   

16.
17.
In the cephalopod mollusk Octopus vulgaris, the gonadotropic hormone released by the optic gland controls sexual maturity. Several lobes of the central nervous system control the activity of this gland. In one of these lobes, the olfactory lobe, a gonadotropin releasing hormone (GnRH) neuronal system has been described. We assume that several inputs converge on the olfactory lobes in order to activate GnRH neurons and that a glutamatergic system mediates the integration of stimuli on these neuropeptidergic neurons. The presence of N-methyl-d-aspartate (NMDA) receptor immunoreactivity in the neuropil of olfactory lobes and in the fibers of the optic gland nerve, along with the GnRH nerve endings strongly supports this hypothesis. A distinctive role in the control of GnRH secretion has also been attributed, in vertebrates, to nitric oxide (NO). The lobes and nerves involved in the nervous control of reproduction in Octopus contain nitric oxide synthase (NOS). Using a set of experiments aimed at manipulate a putative l-glutamate/NMDA/NO signal transduction pathway, we have demonstrated, by quantitative real-time PCR, that NMDA enhances the expression of GnRH mRNA in a dose-response manner. The reverting effect of a selective antagonist of NMDA receptors (NMDARs), 2-amino-5-phosphopentanoic acid (D-APV), confirms that such an enhancing action is a NMDA receptor-mediated response. Nitric oxide and calcium also play a positive role on GnRH mRNA expression. The results suggest that in Octopusl-glutamate could be a key molecule in the nervous control of sexual maturation.  相似文献   

18.
Melanin isolated from the ink sac of cuttle fish (Sepia melanin) is a proposed standard for natural eumelanin. Sepia melanin isolated by a standard protocol was submitted for both elemental analysis and quantitative amino acid analysis. The contribution of the detected amino acids to the elemental composition is subtracted from the total elemental analysis, and the resultant elemental composition reflects the composition of the Sepia melanin backbone chromophore. The assumption is made that, for eumelanins, there is only one nitrogen atom per monomeric unit, and thus, the empirical formula for the average monomeric Sepia melanin backbone chromophore was determined. Three key parameters can be determined for any melanin sample; namely, the molar C/N for the average monomeric unit, the formula weight of the average monomeric unit, and the total percent composition of amino acid residues. Three commonly used melanin preparations, namely, natural Sepia melanin, melanin prepared by the in vitro tyrosinase catalyzed polymerization of tyrosine (tyrosine-enzymatic melanin), and a polymer synthesized by the peroxide oxidative polymerization of tyrosine (tyrosine-chemical melanin), have been subjected to this standard method of characterization. Tyrosine-enzymatic and Sepia melanin are quite similar and tyrosine-chemical melanin is fundamentally different from the other two melanins.  相似文献   

19.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

20.
A laboratory calibration study was undertaken with juvenile Sepia officinalis (80-85 g initial wet weight) to investigate the effects of different food rations and different starving intervals on RNA/dry weight (DW) ratios and RNA/DNA ratios in cephalopod mantle muscle at two different temperatures. The digestive gland index was also used as an additional indicator of recent growth. High food rations and low temperature went along with high RNA/DW ratios and high RNA/DNA ratios. Starving resulted in a linear decline in growth performance and a concomitant decrease in RNA/DW and RNA/DNA ratio, with RNA/DNA ratios representing the growth data better. RNA/DNA ratios decreased faster at higher temperatures. A fluorimetric assay for nucleic acid analysis was optimized for cephalopod mantle tissues and yielded reproducible RNA/DNA ratios with a relative variance below 10%. Thus, it may be possible to use this estimator of recently encountered feeding regime for the evaluation of mortality rates of early teuthid paralarvae to eventually support stock management. Also, log relative digestive gland weight showed a strong relationship with starving time, but, surprisingly, not with temperature. Data from the two temperatures analyzed could be combined to form a common regression line of relative digestive gland index with starving time. This indicator for recent growth might be especially suitable for large specimens with a well-developed digestive gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号