首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein B transports cholesterol in plasma as low density lipoprotein (LDL) and targets its delivery to cells by binding to a specific plasma membrane receptor. The cellular consequences of apoB binding to its receptor were investigated to determine whether it suppresses cholesterol biosynthesis and reduces the number of cellular receptors for the apoprotein. Upon preincubation of fibroblasts with lipoprotein-deficient medium alone or supplemented with either LDL or apoB complexed to BSA (apoB-BSA), LDL suppressed cholesterol biosynthesis, but apoB enhanced it. Similarly, fibroblasts preincubated in medium supplemented with LDL bound decreased amounts of either (125)I-labeled LDL or (125)I-labeled apoB-BSA to their receptors, while preincubation with apoB-BSA increased the binding relative to the controls. These latter results occurred in association with a decrease in cellular cholesterol content, indicating that apoB in the medium bound cholesterol and removed it from the cells, thus stimulating both cholesterol synthesis and cellular binding of apoB. Accordingly, fibroblast cholesterol synthesis and the number of functional LDL receptors are not suppressed by the binding of the apoprotein to the receptor, and the known role of apoB remains that of transporting cholesterol in plasma and delivering it to the cell. A possible physiologic role for apoB in depleting cells of cholesterol is presently unknown since apoB is not known to exist free in plasma; however, these findings demonstrate such a functional capability for this apoprotein.-Shireman, R. B., and W. R. Fisher. Apolipoprotein B: its role in the control of fibroblast cholesterol biosynthesis and in the regulation of its own binding to cellular receptors.  相似文献   

2.
The effects of prostaglandin (PG) E1, PGE2, the stable prostacyclin analogue Iloprost, and PGF2 alpha on low density lipoprotein (LDL) receptor activity and cholesterol synthesis were investigated in freshly isolated human mononuclear leukocytes. Incubation of cells for up to 45 hr in a lipid-free medium resulted in an increase in the rate of cholesterol synthesis from [14C]acetate and the high affinity accumulation and degradation of 125I-labeled LDL. Addition of PGE1 in increasing concentrations to the incubation medium inhibited cholesterol synthesis and the specific accumulation and degradation of 125I-labeled LDL; at a concentration of 10 microM, the inhibitions were 61%, 70%, and 67%, respectively, after an incubation of 20 hr. The effects of PGE2 and Iloprost were similar. The action of the prostaglandins on LDL receptor activity appeared to be mediated by a decrease in the number of LDL receptors and not by a change in the binding affinity. The prostaglandins yielded sigmoidal log concentration-effect curves. In contrast, PGF2 alpha had no influence on cholesterol synthesis or LDL receptor activity up to a concentration of 10 microM. PGE1, PGE2, and Iloprost, but not PGF2 alpha, led to an increase in the concentration of intracellular cyclic AMP. Dibutyryl cyclic AMP mimicked the effects of the E-prostaglandins and Iloprost on the LDL receptor activity. The results suggest that PGE1, PGE2, and prostacyclin affect LDL receptor activity and cholesterol synthesis and, therefore, may play a role in the regulation of cholesterol homeostasis and in the development of atherosclerosis.  相似文献   

3.
Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)   总被引:1,自引:0,他引:1  
The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the "apparent" Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by [3H]thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; [14C]acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column. Uptake of 125I-LDL by confluent monolayers of human skin fibroblasts was not changed by incubation with FM or by incubation with Hep-G2 conditioned medium. Taken together, these data demonstrate that LDL receptor activity in Hep-G2 cells is stimulated by a serum component. Furthermore, this serum factor shows some specificity for the LDL receptor pathway in liver-derived Hep-G2 cells.  相似文献   

4.
The human hepatoma cell line Hep G2 can be maintained in continuous culture and secretes numerous plasma proteins and lipoproteins into the medium. To better characterize cholesterol homeostasis in these cells we have examined the binding, internalization and degradation of [125I]LDL by cultured Hep G2 cells. Hep G2 cells express high-affinity low-density lipoprotein (LDL) receptors which facilitate the binding, internalization and degradation of [125I]LDL; these receptors can be induced by growth in LDL-depleted medium and repressed by further incubation in medium supplemented with LDL. The degradation of [125I]LDL by derepressed Hep G2 cells was inhibited by greater than 90% by monensin. Incubation of Hep G2 cells in the presence of increasing concentrations of LDL also inhibited cholesterol biosynthesis. Our results indicate that Hep G2 cells possess high affinity LDL receptors which are subject to metabolic regulation and suggest that this cell line affords a valuable model to further examine cholesterol and lipoprotein metabolism in human liver cells.  相似文献   

5.
The extent to which cholesterol synthesis is modulated in macrophage foam cells by changes in cholesterol influx and efflux was determined using thioglycollate-elicited peritoneal macrophages from normal and cholesterol-fed White Carneau (WC) and Show Racer (SR) pigeons. In peritoneal macrophages from normocholesterolemic pigeons, sterol synthesis from [(14)C]-acetate was down-regulated by more than 90% following incubation in vitro with beta-VLDL. Sterol synthesis was increased when the cellular free cholesterol concentration was decreased in response to stimulation of cholesterol efflux with apoHDL/phosphatidylcholine vesicles and cyclodextrin. Peritoneal macrophages isolated from hypercholesterolemic pigeons were loaded with cholesterol to levels similar to foam cells from atherosclerotic plaques (375-614 microg/mg cell protein), and had an extremely low rate of sterol synthesis. When cholesterol efflux was stimulated in these cells, sterol synthesis increased 8 to 10-fold, even though the cells remained grossly loaded with cholesterol. Cholesterol efflux also stimulated HMG-CoA reductase activity and LDL receptor expression. This suggests that only a small portion of the total cholesterol pool in macrophage foam cells was responsible for regulation of sterol synthesis, and that cholesterol generated by hydrolysis of cholesteryl esters was directed away from the regulatory pool by efflux from the cells. When the increase in sterol synthesis was blocked with the HMG-CoA reductase inhibitor mevinolin, there was no difference in the cholesterol content of the cells, or in the mass efflux of cholesterol into the culture medium.Thus, under these conditions, the increase in cholesterol synthesis during stimulation of cholesterol efflux does not appear to contribute significantly to the mass of cholesterol in these macrophage foam cells. Whether a similar situation exists in vivo is unknown.  相似文献   

6.
7.
M S Brown  J L Goldstein 《Cell》1975,6(3):307-316
A specific receptor on the surface of cultured human fibroblasts binds plasma low density lipoprotein (LDL) with high affinity, and thereby initiates a cellular process by which the LDL is internalized and degraded within lysosomes and its cholesterol component is made available for cellular membrane synthesis. Current studies demonstrate that the activity of this LDL receptor is under feedback regulation. Prior incubation of fibroblast monolayers with cholesterol, 25-hydroxycholesterol, or LDL progressively reduced the ability of the cells to bind 125I-labeled LDL at the high affinity site. A series of kinetic studies indicated that this reduction in binding was due to a decrease in the number of LDL receptors. From measurements of the rate of decline in 125I-LDL binding activity after administration of cycloheximide, the LDL receptor was calculated to have a half-life of about 25 hr. LDL appeared to reduce 125I-LDL-binding activity by suppressing the synthesis of receptor molecules. Thus cultured human fibroblasts regulate their intracellular cholesterol content by regulating the activity of the LDL receptor, which in turn controls the rate of cellular entry of cholesterol derived from plasma LDL contained within the culture medium.  相似文献   

8.
Unlike cells cultured under physiological Ca2+ concentrations (1-2 mM), keratinocytes cultured in media containing Ca2+ in low concentrations (less than 0.1 mM) do not stratify. The latter cells also differ with respect to several features of the regulation of cholesterol synthesis. In keratinocytes cultured in medium containing high Ca2+ concentrations (1.6 mM) and fetal calf serum, the rate of cholesterol synthesis was 20-30 times higher than in keratinocytes exposed to a low Ca2+ concentration. The rate of cholesterol synthesis did not change when high-calcium cells were deprived of extracellular sources of cholesterol but increased (8-10 fold) in deprived low-calcium cells. Furthermore, the addition of low density lipoprotein (LDL) reduced cholesterol synthesis markedly in low-calcium cells but had no effect on high-calcium cells. Finally, in keratinocytes cultured at low calcium concentrations the association and degradation of 125I-LDL was 20-30 times higher than in keratinocytes cultured under high-calcium conditions. Switching of the cells from the low-calcium to the high-calcium medium resulted in the induction of terminal differentiation within 15 hours and was accompanied by increased cholesterol and protein synthesis, increased competence of cells to form cornified envelopes, and reduced association of 125I-LDL. A gradual increase of the extracellular Ca2+ concentration was accompanied by a corresponding increase of cholesterol and protein synthesis and a decrease of the response of intracellular cholesterol synthesis to changes in the extracellular concentrations of lipoprotein. Various morphological techniques showed virtually no binding and internalization of LDL by keratinocytes cultured at the high-calcium level, whereas both were observed at the low-calcium level. Once internalized, the LDL was delivered to dense bodies representing lysosomes. It is concluded that in human epidermal keratinocytes, the expression of the LDL receptor and the endogenous synthesis of cholesterol are regulated by the conditions determined by the differentiation stage of the cells.  相似文献   

9.
One characteristic of type C Niemann-Pick (NPC) disease is the substantial intracellular accumulation of unesterified cholesterol. The increased cholesterol content in NPC fibroblasts which are grown in the presence of low density lipoproteins (LDL) has been postulated to be due to a deficiency in cellular cholesterol esterification. We have examined several aspects of LDL metabolism in NPC fibroblasts. We observe that LDL binding, internalization, and lysosomal hydrolysis of LDL cholesteryl esters are normal in NPC cells. As reported by Pentchev et al. (Pentchev, P. G., Comly, M. E., Kruth, H. S., Vanier, M. T., Wenger, D. A., Patel, S., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8247-8251), we find that LDL does not stimulate cholesterol esterification. However, we also show that LDL does not down-regulate cholesterol synthesis or LDL receptor activity as normal. In NPC cells, these processes are regulated normally by nonlipoprotein effectors, such as 25-hydroxycholesterol or mevalonate. Since NPC cells are not defective in lysosomal hydrolysis of LDL-derived cholesteryl esters, they must exhibit a different defect than Wolman's or cholesteryl ester storage diseases. We conclude that NPC cells are defective specifically in LDL-mediated regulation of cellular cholesterol metabolism. We suggest that the intracellular processing of LDL-derived cholesterol may be defective in NPC fibroblasts.  相似文献   

10.
Administration of estrogens in pharmacologic doses to rats and rabbits induces hepatic low-density lipoprotein (LDL) receptor activity. To determine if estrogens can regulate LDL receptor activity in human cells, 125I-LDL binding and ligand blotting studies were performed with the cell line Hep G2, well-differentiated cells derived from a human hepatoma, and with normal human fibroblasts. Addition of estradiol to Hep G2 cells growing in lipoprotein-deficient medium increased cell surface receptor activity by 141%, whereas fibroblast receptors were slightly reduced. Measurement of LDL internalization and degradation showed that estradiol induced the entire LDL receptor pathway and not simply surface receptors for LDL. Scatchard analysis of specific binding data in Hep G2 cells revealed that increased LDL receptor activity was due to high-affinity binding. When Hep G2 cells were incubated with LDL as well as estradiol, estradiol induction of LDL receptor activity did not occur. Estrogen treatment reduced Hep G2 free cholesterol content by 24% as determined by gas-liquid chromatography but had no significant effect on fibroblast free cholesterol, suggesting that estrogens may induce Hep G2 LDL receptor activity indirectly by lowering intracellular cholesterol. LDL receptor activity in Hep G2 cells grown in the absence of estradiol was resistant to down-regulation by LDL; incubation of cells with LDL for 48 h reduced receptor activity by only 25.8% in Hep G2 cells compared to 80.3% in fibroblasts. The Hep G2 LDL receptor was shown to be biochemically similar to the fibroblast receptor by ligand blotting and immunoblotting with IgG-C7, a monoclonal antibody to the extrahepatic LDL receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The mass efflux of free and esterified cholesterol was studied in skin fibroblasts loaded with cholesterol by incubation with low density lipoproteins (LDL) isolated from normal or hypercholesterolemic cynomolgus monkeys. Cells incubated with hypercholesterolemic LDL accumulated 2-3 times more cholesteryl ester than did cells incubated with the same amount of normal LDL. Cholesteryl oleate was the principal cholesteryl ester species to accumulate in cells incubated with both normal and hypercholesterolemic LDL. Efflux of this accumulated cholesterol was absolutely dependent on the presence of a cholesterol acceptor in the culture medium. Lipoprotein-deficient serum (LPDS) was the most potent promoter of cholesterol efflux tested, with maximum efflux occurring at LPDS concentrations greater than 1.5 mg protein/ml. Upon addition of efflux medium containing LPDS, there was a reduction in both the free and esterified cholesterol concentration of the cells. Greater than 90% of the cholesteryl esters that were lost from the cells appeared in the culture medium as free cholesterol, indicating that hydrolysis of cholesteryl esters preceded efflux. Efflux was not inhibited by chloroquine, however, suggesting a mechanism independent of lysosomes. Loss of cellular free cholesterol was maximum by 6 hr and changed very little thereafter up to 72 hr. Cholesteryl ester loss from cells decreased in a log linear fashion for efflux periods of 6-72 hr, with an average half-life for cholesteryl ester efflux of 30 hr, but with a range of 20-50 hr, depending upon the specific cell line. The rate of efflux of cellular cholesteryl esters was similar for cells loaded with normal or hypercholesterolemic LDL. In cells loaded with cholesteryl esters, cholesterol synthesis was suppressed and cholesterol esterification and fatty acid synthesis were enhanced. During efflux, cholesterol synthesis remained maximally suppressed while cholesterol esterification decreased for the first 24 hr of efflux, then plateaued at a level approximately 5-fold higher than control levels, while fatty acid synthesis was slightly stimulated. There was little difference in the rate of efflux of individual cholesteryl ester species. There was, however, the suggestion that reesterification of cholesterol principally to palmitic acid occurred during efflux. Since the rate of cellular cholesteryl ester efflux was similar regardless of whether the cells had been loaded with cholesterol by incubation with normal LDL or hypercholesterolemic LDL, the greater accumulation of cholesterol in cells incubated with hypercholesterolemic LDL cannot be explained by differences in rates of efflux.-St. Clair, R. W., and M. A. Leight. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein.  相似文献   

12.
Cholesterol synthesis in actively growing bovine vascular endothelial cells is regulated by low density lipoprotein (LDL) at a step prior to mevalonate formation, in a manner comparable to that found in aortic smooth muscle cells. LDL uptake by these cells is associated with induction of cholesterol esterification, an increase in total cell cholesterol, and an inhibition of endogenous sterol synthesis. In contrast, cholesterol metabolism in confluent contact-inhibited endothelial cultures was not significantly affected by LDL even though the cells bind the lipoprotein at high affinity receptor sites. Lysosomal degradation and subsequent regulatory effects on cellular cholesterol metabolism, however, were observed in contact-inhibited endothelial cells incubated with cationized rather than native LDL. Cationized LDL enter the cells independently of the high affinity sites. Therefore, the primary regulation of cholesterol metabolism in these cells is neither through the appropriate intracellular enzymes nor through the high affinity surface receptors, but via an inhibition of LDL internalization. It is suggested that this inhibition is due to a strict contact-inhibited morphology which enables the endothelium of the larger arteries to function as a selective barrier to the high circulating levels of plasma LDL.  相似文献   

13.
The efficiency of supplying cholesterol by the LDL endocytic pathway of lymphoblastic T CEM cells was compared when incubated in the presence of either fetal calf serum (FCS) or lipoprotein-depleted fetal calf serum (LDFCS). In the presence of FCS, there were 8600 +/- 2000 LDL receptors/cell with a Kd of (2.2 +/- 0.8).10(-8) M and a receptor cycling time of about 7 min; about 90% of the internalized LDL was degraded. LDL degradation produced 98% of total cellular cholesterol and only 2% came from endogenous synthesis. The absence of LDL in the culture medium of lymphoblastic CEM cells deeply modified certain metabolic and structural characteristics of the cells. Their cholesterol content decreased; the total number of LDL receptors increased 6-fold, whereas their affinity for the ligand decreased by the same factor (Kd = (1.2 +/- 0.2).10(-7) M); the receptor cycling time increased 3-fold. Finally, LDL degraded by cholesterol-depleted CEM cells amounted to about 40% of that degraded by untreated CEM cells.  相似文献   

14.
Regulation of low-density-lipoprotein-receptor activity by low-density lipoprotein (LDL), cholesteryl-ester-rich beta-migrating very-low-density lipoprotein (beta-VLDL) and non-lipoprotein cholesterol was investigated in the human hepatoma cell line Hep G2. Competition studies indicate that LDL and beta-VLDL are bound to the same recognition site, tentatively the LDL receptor. The regulatory response of the LDL receptor upon prolonged incubation with LDL or beta-VLDL was, however, markedly different. 22 h preincubation of Hep G2 cells with excess LDL caused a partial down regulation to 31% of the initial level of the high-affinity association of LDL and 26% of the high-affinity degradation of LDL, while with beta-VLDL a complete down regulation of the LDL-receptor activity is observed. Preincubation of Hep G2 cells with beta-VLDL for 22 h led to a fourfold increase in intracellular cholesterol esters and a twofold increase in acyl-coA:cholesterol acyltransferase activity. With LDL, the amount of intracellular cholesterol esters is increased 1.6-fold. The more effective down regulation of LDL receptors by beta-VLDL as compared to LDL can be explained by the more effective intracellular cholesterol delivery with beta-VLDL than with LDL. Preincubation of Hep G2 cells for 22 h with acetylated LDL hardly influenced the LDL-receptor activity. Non-lipoprotein cholesterol, however, caused a complete down regulation of LDL-receptor activity at even lower extracellular cholesterol concentrations than with beta-VLDL. The complete down regulation of LDL receptors by non-lipoprotein cholesterol is not accompanied by a significant increase in acyl-coA:cholesterol acyltransferase activity, while the intracellular cholesterol ester concentration is only increased 1.6-fold. It is suggested that the effectiveness of non-lipoprotein cholesterol to regulate LDL receptors is caused by its efficiency to reach the sterol regulatory site. The inability of LDL to down regulate its receptor completely can thus be explained by the inability of LDL to deliver cholesterol adequately at the intracellular regulatory site of the LDL receptor. The observed complete down regulation of the LDL receptor by beta-VLDL may be responsible for the cholesterol-rich-diet induced, complete down regulation of LDL-receptor-mediated clearance of LDL in vivo.  相似文献   

15.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

16.
High affinity cell surface receptors for low density lipoproteins (LDL) are inducible in cultured human lung fibroblasts by the removal of lipoproteins from the cell culture medium. The binding, uptake, and degradation of 125I-LDL by fibroblasts decrease with increasing number of population doublings. The affinity of LDL receptor binding, however, remained unchanged at different population doublings levels. Hence, the difference in LDL binding activity in the aging fibroblasts can be attributed to a reduction in the number of receptor sites on the cell membrane. Cellular uptake of [4-14C]cholesterol and 2-deoxy-D-[1-14C]glucose mediated through mechanisms independent of the LDL receptor pathway revealed no significant difference in early and late passage fibroblasts. This suggests that the alteration in the LDL receptor binding in serially passaged fibroblasts is an "age-related" phenomenon. The late population doubling fibroblasts require more LDL in the culture medium for feedback inhibition of LDL receptor synthesis. Thus, aging fibroblasts are both progressively less inducible and less suppressible in the regulation of their cell membrane LDL receptors. Similar results were also obtained with respect to the regulation of DL-3-hydroxy-3-methyl-glutaryl coenzyme A reductase in the aging fibroblasts in culture; the enzyme has become less inducible and less supressible as the fibroblasts approach the limit of their in vitro lifespan. These age-related alterations in the cellular metabolism of LDL and cholesterol might contribute to our understanding of the increased risk of athlerosclerosis in our aging population.  相似文献   

17.
Cholesterol metabolism was examined in aortic smooth muscle cells from atherosclerosis-susceptible White Carneau pigeons that have been shown to lack a functional LDL receptor pathway. In cells incubated in the presence of whole serum or low density lipoprotein (LDL) the rate of cholesterol synthesis from [1-14C]acetate or of HMG-CoA reductase activity was 20-100 times greater than for mammalian cells incubated under the same conditions. Unexpectedly, cholesterol synthesis decreased by nearly 50% after preincubation for 24 hr with lipoprotein-deficient serum (LPDS). This occurred without a change in cellular cholesterol content. Neither the high rate of cholesterol synthesis nor the effect of LPDS could be accounted for by differences in cell turnover or state of growth. Cholesterol added in ethanol was ineffective in altering cellular cholesterol synthesis or esterification even though a near doubling in cellular free cholesterol content occurred. Cholesterol synthesis and esterification were, however, able to be regulated with 25-OH cholesterol and mevalonolactone, as indicated by their ability to suppress cholesterol synthesis and to stimulate cholesterol esterification. In spite of the high rate of endogenous cholesterol synthesis, cellular cholesterol content was maintained at a constant level by the efficient efflux of the newly synthesized cholesterol from the cell. Unlike mammalian cells that require a cholesterol acceptor in the medium for efflux to occur, cholesterol efflux from pigeon cells occurred in the absence of a cholesterol acceptor. This suggests either that pigeon cells utilize a different mechanism for cholesterol efflux or that they produce their own cholesterol acceptor. As a result of a lack of a functional LDL receptor pathway, pigeon smooth muscle cells do not maintain cholesterol homeostasis through the controlled uptake of exogenous LDL cholesterol, as do mammalian cells. Rather, pigeon smooth muscle cells would appear to regulate cholesterol concentrations at the level of either cholesterol synthesis or efflux.  相似文献   

18.
Summary Purified heparin-binding growth factor-1 (HBGF-1) stimulated low density lipoprotein binding, internalization, and degradation in isolated human adult arterial smooth muscle cells. Exposure of quiescent cells to HBGF-1 in serum-free, defined medium increased both low density lipoprotein (LDL) receptor activity and de novo cholesterol biosynthesis. Both events preceded the onset of DNA synthesis by 6 to 9 h. HBGF-1 acted additively with platelet-derived growth factor (PDGF) to maximally stimulate cell surface LDL receptor binding activity and DNA synthesis in the smooth muscle cells. The presence of LDL was required for maximal mitogenic activity of HBGF-1 and PDGF. In the presence of LDL, growth factor-stimulated, proliferating human smooth muscle cells accumulated cholesterol ester and triglycerides. The results suggest that HBGF-1, PDGF, and LDL act together to promote the maximal proliferation of smooth muscle cells in culture. Chronic exposure to the three growth promoters may contribute to the smooth muscle cell hyperplasia and lipid accumulation observed in atherosclerotic lesions. This work was supported by the National Cancer Institute grants CA 37589 and HD 03275, National Council for Tobacco Research grant 1718, and a grant from RJR Nabisco, Inc.  相似文献   

19.
To evaluate the impact of taurine on hepatic cholesterol catabolism low density lipoprotein (LDL) binding, internalization and degradation were measured in cultured Hep G2 cells. Preincubation of cells with 0.1-10 mM taurine for 24 h stimulated LDL receptor activity by as much as 100%. Only the high affinity LDL receptor activity (specific) was increased by taurine preincubation, whereas the low affinity receptor activity (nonspecific) remained unchanged. Scatchard analysis of the binding data revealed that taurine doubled the number of LDL receptors without affecting receptor affinity. Taurine-enhanced LDL receptor activity was most pronounced when LDL concentrations exceeded 100 micrograms/ml, but was noted at taurine concentrations as low as 0.1 mM (plasma level). Interestingly, taurine had no effect on LDL receptor activity when it was added simultaneously with 125I-LDL to Hep G2 cells, or when non-bile acid-producing human skin fibroblasts were tested. Stimulation of LDL receptor activity was also obtained with 10 mM cysteine, a taurine precursor, but not with glycine. Increased cellular concentrations of taurine and cysteine were associated with an elevated rate of bile acid synthesis and a reduced cellular free cholesterol concentration. The data suggest that taurine enhanced LDL receptor activity by sparing cysteine, a known sulfhydryl group donor and stimulator of 7 alpha-hydroxylase activity, and that the latter stimulated bile acid production leading to increased utilization of cellular free cholesterol and enhanced LDL uptake.  相似文献   

20.
Steroidogenic cells utilize lipoprotein-delivered cholesterol as a primary substrate for hormone synthesis. We studied low density lipoprotein (LDL) receptors in cultured human granulosa cells to determine what factors regulate receptor expression. Granulosa cells cultured under serum-free conditions were treated with human chorionic gonadotropin (hCG) for 1.5 to 14 hr. The LDL receptor content of cells increased by approximately twofold within 6 hr of hCG treatment, and the content continued to increase for at least 14 hr, as determined by immunoblotting. The rate of LDL receptor synthesis was also demonstrated to increase within 2.5 to 3.5 hr of hCG treatment by immunoisolation of LDL receptor from cells metabolically labeled with a pulse of [35S]methionine. The cyclic AMP analogue, 8-bromo-cAMP, was also found to increase LDL receptor synthesis. This increased rate of synthesis was shown to be dependent on ongoing RNA synthesis, since actinomycin D abolished hCG- or 8-bromo-cAMP-stimulated LDL receptor synthesis. We also demonstrated that hCG- and 8-bromo-cAMP-mediated regulation of LDL receptor synthesis in granulosa cells supersedes the classical cholesterol-mediated regulation of the receptor described in fibroblasts. Although 25-hydroxycholesterol induced a decrease in LDL receptor content and synthesis within 6 hr, this action was overridden by simultaneous exposure to hCG. Our findings demonstrate the existence of a novel cAMP-mediated mechanism for regulation of LDL receptor synthesis in steroidogenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号