首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The baculovirus expression system has been used to produce large amounts of biologically active proteins by infecting insect cells with a recombinant baculovirus expressing the target protein. For an efficient expression of the target protein, it is necessary to infect insect cells with an adequate amount of virus. However, current methods are time-consuming and either have technical difficulties or are limited as a result of virus expression mechanism using a reporter gene. A novel method is developed to yield virus titers in 10 h that is easy to perform using 96-well plates and applicable to both any Autographa californica nucleopolyhyderovirus (AcNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV)-based recombinant baculovirus. This assay uses an antibody to a DNA-binding protein to detect the infected cells via immunostaining. The titer is determined by counting foci produced as a result of infection of the virus under a fluorescent microscope. The required incubation period was shortened considerably because infected cells expressed viral antigens at the post-infection time of 4 h. Therefore, 10 h was enough to estimate the virus titer including virus infection time, insect cell culture, and estimation of virus titer. Titers determined using this immunological assay are comparable, both in value and validity, to those obtained using a traditional method, provided that the stocks have titers above 10(3) pfu/mL.  相似文献   

2.
腺相关病毒(adeno-associated virus, AAV)是基因治疗领域最常使用的病毒载体之一,产量低、成本高是该产业面临的关键瓶颈问题。本研究旨在基于多基因缺失型杆状病毒,建立双病毒感染昆虫细胞以生产AAV的技术体系。首先,进行AAV生产用多基因缺失型重组杆状病毒的构建和扩增,并检测杆状病毒滴度及其感染细胞的效果;然后,使用双杆状病毒共感染昆虫细胞,并优化感染条件;最后,基于优化条件进行AAV生产,并检测评估产量、质量等相关指标。结果表明,AAV生产用多基因缺失型杆状病毒滴度较野生型无差异,感染后细胞存活率下降明显减缓。使用双病毒路线进行AAV优化生产,Bac4.0-1的基因组滴度为1.63×1011 VG/mL,Bac5.0-2的基因组滴度为1.02×1011 VG/mL,较野生型产量分别提升了240%和110%。电镜下,3组均具有正常的AAV病毒形态,且转导活性相近。本研究建立了基于多基因缺失型杆状病毒感染昆虫细胞的AAV生产体系,显著提高了AAV产量,具有一定的应用价值。  相似文献   

3.
Determination of the baculovirus transducing titer in mammalian cells   总被引:1,自引:0,他引:1  
Baculovirus has emerged as a promising vector for in vivo or ex vivo gene therapy. To date, the infectious titer and multiplicity of infection (MOI) based on the ability of baculovirus to infect insect cells are commonly adopted to indicate the virus dosage. However, the infectious titer and MOI do not reliably represent the baculovirus transducing ability, making the comparison of baculovirus-mediated gene transfer difficult. To determine the baculovirus transducing ability more rapidly and reliably, we developed a protocol to evaluate the transducing titers of baculovirus stocks. The virus was diluted twofold serially and used to transduce HeLa cells. The resultant transduction efficiencies were measured by flow cytometry for the calculation of transducing titers. Compared to the infectious titer, the determination of transducing titer is more reproducible as the standard deviations among measurements are smaller. Also, the transducing titers can be obtained in 24 h, which is significantly faster as opposed to 4-7 days to obtain the infectious titer. More importantly, we demonstrated that baculoviruses with higher transducing titers could transduce cells at higher efficiency and yield stronger and longer transgene expression, confirming that the transducing titer was representative of the baculovirus transducing ability. This finding is particularly significant for ex vivo gene delivery whereby unconcentrated viruses are used for transduction and long-term transgene expression is desired. In this regard, our titration protocol provides a simple, fast, and reliable measure to evaluate the quality of virus stocks during virus production and purification, and is helpful to predict the performance of vector supernatants and ensure reproducible gene delivery experiments.  相似文献   

4.
Retroviral vectors usually contain drug resistance genes, which are used to select for infected cells and to determine the viral titers. The viral titer is referred to as colony-forming units (CFUs). Color reporter genes, such as thelacZ gene and the green fluorescent protein gene(gfp), have been widely used as markers in retroviral vectors. In this report, a simple and rapid method for the determination of retroviral titers has been developed. The number of viral particles capable of forming individual green cells per unit volume is defined as marker-forming units (MFUs). The MFUs determined by usinggfp as a marker were found to be proportional to the CFUs obtained by using drug selection for five different drug resistance genes. In addition, after adjusting the time factor, the MFUs are higher than CFUs in viruses released from 30 stable helper cell lines. The lower titers determined by CFUs are likely due to the toxicity on transduced cells.  相似文献   

5.
Vectors based on adeno-associated viruses (AAV) are sought for therapeutic gene delivery because of their ability to transduce a variety of tissues with no significant immunological response. Production using the baculovirus expression vector (BEV)/insect cell system has the potential to meet the needs for pre-clinical and clinical trials. In this co-infection system, three baculoviruses are used to produce the AAV vector. A strategy aimed at increasing encapsidation/maturation of the viral vector involved varying the temperature over the course of the process. Cultures were subjected to temperature changes at various times pre- and post-infection (up to 24 h post-infection). It was found that raising the culture temperature to 30 degrees C at the time of infection nearly tripled the infectious titer. In fact, increasing the temperature to 30 degrees C at any time in the process investigated resulted in an increase in titer. Also, raising the culture to 33 degrees C or lowering the temperature to 24 degrees or 21 degrees C resulted in lower titers. The rise in infectious titer was also confirmed by an increase in DNase resistant particles (DRPs). Varying the temperature, however, did not affect the total amount of capsids significantly. Therefore increasing the culture temperature resulted in better encapsidation as determined by the ratio of capsids to DRPs to infectious particles. It is believed that an increase in early proteins and possibly a quicker cascade of baculovirus infection events resulted in this increased packaging efficiency.  相似文献   

6.
One of the major concerns regarding the use of insect cells and baculovirus expression vectors for the production of recombinant proteins is the drop in production observed when infecting cultures at high cell densities; this work attempts to understand this so-called cell density effect in the scope of baculovirus production for gene therapy purposes. A Spodoptera frugiperda insect cell line (Sf-9) was cultured and infected in serum-free medium, and the patterns of production of a recombinant baculovirus expressing the green fluorescent protein (GFP) were analyzed at different cell concentrations at infection (CCIs) and multiplicities of infection (MOIs). The results confirm that a cell density effect on productivity occurs which is dependent on the MOI used, with a high MOI “delaying” the drop in production to higher cell densities. Medium replacement at the time of infection using a high MOI considerably improved baculovirus production, with the different production indicators, namely the titer, specific yield, amplification factor, and time of harvesting, increasing with cell concentration for the CCI range tested. Virus titers as high as 2.6 × 1010 IP.mL−1 were obtained in cultures infected at 3.5 × 106 cells.mL−1, while the amplification factor was roughly 19 times higher than the highest value obtained without medium exchange.  相似文献   

7.
The 36-kDa beta 1, 35-kDa beta 2, and 6.5-kDa gamma 2 subunits of the heterotrimeric guanine nucleotide-binding proteins have been overexpressed in Sf9 cells using a baculovirus expression system. The gamma 2 subunit expressed in Sf9 cells incorporated label derived from [3H]mevalonate and is therefore likely to be isoprenylated, as is its mammalian counterpart. Extracts of Sf9 cells doubly infected with viruses encoding a beta subunit and viruses encoding a gamma subunit are active in promoting the pertussis toxin-catalyzed ADP-ribosylation of a G protein alpha subunit. However, extracts from Sf9 cells singly infected with viruses encoding either a beta or gamma subunit are not active in this assay. Results demonstrate utility of the insect/baculovirus system for expressing G protein beta gamma subunits of defined composition.  相似文献   

8.
9.
The conditions of immunoenzyme assay have been studied on the solid state phase of infected cells using the model of monoclonal antibodies MAK-14-7 to the virus of Venezuelan equine encephalomyelitis (VVEE) and monoclonal antibodies OKA-1 to vaccine virus in the systems of VNK-21 cells or 4647 cells infected by VVEE, or HeLa cells infected by vaccine virus. The titer of monoclonal antibodies detected grows with the dose of infected cells fixed in the holes of micropanel used for reaction and with the multiplicity of infection. The most intensive and contrasting dyeing of conjugate has been registered when the cells have been fixed with 0.25% glutaraldehyde 24 h after infection. The titers of ascytic preparations of monoclonal antibodies MAK-14-7 and OKA-1 under the optimal conditions of immunoenzyme assay reaction on the solid phase of infected cells present 1 : 10 000 and 1 : 100 000.  相似文献   

10.
This report describes novel baculovirus vectors designed to express mammalian beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes at early times after infection. Sf9 cells infected with these viral vectors, unlike cells infected with a wild-type baculovirus, produced a sialylated viral glycoprotein during the late phase of infection. Thus, the two mammalian glycosyltransferases encoded by these viral vectors are necessary and sufficient for sialylation of a foreign glycoprotein in insect cells under the conditions used in this study. While some of the new baculovirus vectors described in this study produced less, one produced wild-type levels of infectious budded virus progeny.  相似文献   

11.
This paper describes the setup and the use of a flow cytometric method for monitoring Sf9 insect cell infection by a recombinant baculovirus expressing the human alpha1,3/4 fucosyltransferase Fuc-TIII. Using side scattered light coupled to green fluorescence detection after immunolabeling of the recombinant protein, this method made it possible to monitor baculovirus infection of Sf9 cells grown in batch cultures and infected at different cell densities and multiplicities of infection. The method was able to precisely assess the extent of infection of the insect cells from 60 h postinfection. In asynchronously infected Sf9 cell cultures, the two-step infection process (primary and secondary infection) was well-characterized using this technique. Finally, a reduced sensitivity to baculovirus infection was observed for cells infected at the end of the growth phase compared to the cells infected during exponential growth phase.  相似文献   

12.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

13.
In this paper, a simple and rapid protocol for determination of baculovirus titers based on increasing viable insect cell size/diameter following virus infection is presented. There are different methods available for determining virus titers such as plaque assays end-point dilution, quantitative real-time polymerase chain reaction and flow cytometry. However, most of these methods are time consuming and labor intensive. The titer estimation method presented here can be completed in approximately 28 h from start to finish. In this method, the Vi-CELL (Beckman Coulter) was used to measure cell diameter change over a range of virus dilutions, following infection. The cell diameter change data were used to compute the virus titer using a statistical method called the method of moments that we have described previously.  相似文献   

14.

Background

Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored.

Methods

A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity.

Results

Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion.

Conclusions

Cells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.  相似文献   

15.
目的以人单纯疱疹病毒(HSV-1)做为抗原,利用空斑法和IFA法比较猴BV和人HSV-1阳性血清两种不同血清的中和能力的差异,建立一种实用、准确、可靠的病毒毒力的检测方法。方法首先,将HSV-1病毒悬液作连续的10倍稀释,取1 mL接种于已经长成单层的Vero-E6细胞上,用1%甲基纤维素覆盖,待其出现蚀斑后计数,算出病毒悬液中每毫升所含蚀斑单位,即滴定出HSV-1的TC ID50。同时,用免疫荧光方法(IFA)对猴和人疱疹阳性血清进行滴定,得到其血清的效价。其次,用滴定出的病毒液分别与两种阳性血清体外中和后,接种到单层的Vero-E6细胞上,用1%甲基纤维素覆盖,待其出现蚀斑后计数。最后,计算出其蚀斑减少率。结果用1%甲基纤维素作覆盖层的蚀斑数量平均为10-5PFU,能形成115-116个/mL蚀斑,形状呈黍米大小的规则圆形,其蚀斑边缘清晰。IFA滴定的人HSV-1阳性血清与猴BV阳性血清的中和抗体均为1∶80。人HSV-1和猴BV两种阳性血清的空斑减少率均为100%。结论确定了利用1%甲基纤维素做为覆盖层可得到清晰可靠的蚀斑,由此方法检测到用人HSV-1可以代替猴B病毒,筛查猴B病毒抗体。且为将来进行药物筛选和中和实验中利用病毒空斑法建立方便、可靠的方法。  相似文献   

16.
Traditional studies on viral neuroinvasiveness and pathogenesis have generally relied on murine models that require the sacrifice of infected animals to determine viral distributions and titers. The present paper reports the use of in vivo bioluminescence imaging to monitor the replication and tropism of KOS strain HSV-1 viruses expressing the firefly luciferase reporter protein in hematogenously infected mice. Following intraperitoneal injection, a comparison was made between real-time PCR determinations of HSV-1 DNA concentrations (requiring the sacrifice of the experimental animals) and in vivo bioluminescence emissions in living animals. For further comparison, in vitro light emission was also measured in the ovaries and adrenal glands of sacrificed mice. After infection, HSV-1 spread preferentially to the ovaries and adrenal glands (these organs showed the highest virus levels). Both the PCR and bioluminescence methods detected low viral loads in the nervous system, where the virus was restricted to the spinal cord. The concentrations of viral DNA measured correlated with the magnitude of bioluminescence in vivo, and with the photon flux determined by the in vitro luciferase enzyme assay. The results show that bioluminescence imaging can be used for non-invasive, real-time monitoring of HSV-1 hematogenous infection in living mice, but that coupling this methodology with conventional techniques aids in the characterization of the infection.  相似文献   

17.
The production of viral vectors or virus-like particles for gene therapy or vaccinations using the baculovirus expression system is gaining in popularity. Recently, reports of a viral vector based on adeno-associated virus (AAV) produced in insect cells using the baculovirus expression vector system have been published. This system requires the triple infection of cells with baculovirus vectors containing the AAV gene for replication proteins (BacRep), the AAV gene for structural proteins (BacCap), and the AAV vector genome (BacITR). A statistical approach was used to investigate the multiplicities of infection of the three baculoviruses and the results were extended to the production of AAVs containing various transgenes. Highest AAV yields were obtained when BacRep and BacCap, the baculovirus vectors containing genes that code for proteins necessary for the formation of the AAV vector, were added in equal amounts at high multiplicities of infection. These combinations also resulted in the closest ratios of infectious to total AAV particles produced. Overexpression of the AAV structural proteins led to the production of empty AAV capsids, which is believed to overload the cellular machinery, preventing proper encapsidation of the AAV vector transgene, and decreased the viability of the insect cells. Delaying the input of BacCap, to reduce the amount of capsids produced, resulted in lower infectious AAV titers then when all three baculoviruses were put into the system at the same time. The amount of BacITR added to the system can be less than the other two without loss of AAV yield.  相似文献   

18.
Titer determination is a prerequisite for the study of viruses. However, the current available methods are tedious and time-consuming. To improve the efficiency of titer determination, we have developed a rapid and simple method for the routine detection of baculovirus titers using a quantitative real-time PCR. This method is based on the amplification of approximately 150-bp fragments located in the coding regions of selected genes. The PCR was found to be quantitative in a range of 10(3) to 10(9) virus particles per 200 microL of supernatant, and the results were closely correlated with titers detected from 50% tissue culture infectious doses (TCID(50)) of baculovirus. This quantitative real-time PCR requires only 30 min to perform, and the entire titer determination can be accomplished within 1 h without the need for cell seeding or further virus dilution and infection. Because this technology is easy to operate, generates data with high precision, and most importantly is very quick, it will certainly be broadly applied for titer determination of baculoviruses in the future.  相似文献   

19.
The observation of murine retrovirus infection of microglial cells in brain regions expressing spongiform neurodegenerative changes suggests that these cells may play an important role in pathogenesis. To evaluate this potential in vitro, murine microglial cells were infected in mixed glial cultures with the highly neurovirulent murine retrovirus, FrCasE. The microglia were then isolated from the mixed cultures on the basis of their differential adherence and shown to be approximately 98% pure. The infected microglia expressed viral envelope protein at the plasma membrane, while viral budding was primarily intracellular. Evaluation of the viral envelope protein by immunoblotting indicated that the immunoreactive species produced was exclusively a 90-kDa precursor protein. Very little of the envelope protein was associated with particles released from these cells, and viral titers in the culture supernatant were low. Interestingly, these cells were still capable of infecting permissive target cells when seeded as infectious centers. This partially defective infection of microglial cells suggests a potential cellular means by which a neurovirulent retrovirus could disrupt normal microglia and in turn central nervous system motor system functioning.  相似文献   

20.
African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion. However, ethical and financial considerations, relating to the use of infected horses in high biosecurity installations, have made progress very slow. We have therefore assessed the potential of an experimental mouse-model for AHSV infection for vaccine and immunology research. We initially characterised AHSV infection in this model, then tested the protective efficacy of a recombinant vaccine based on modified vaccinia Ankara expressing AHS-4 VP2 (MVA-VP2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号