首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormone-sensitive lipase of adipose tissue.   总被引:3,自引:0,他引:3  
Some physiologic aspects of the mobilization and fate of free fatty acids are reviewed. The molecular mechanism of the activation of hormone-sensitive lipase in adipose tissue is then discussed. Recent evidence established that hormone-sensitive lipase, concerned with fat mobilization, is both functionally and immunochemically distinct from lipoprotein lipase, concerned with uptake of plasma triglycerides. Lipoprotein lipase activity is not altered by cyclic AMP-dependent protein kinase. The latter enzyme enhances not only triglyceride hydrolase but also monoglyceride, diglyceride and cholesterol ester hydrolase activities in chicken adipose tissue. Finally, it is shown that the activation of all four acyl hydrolases is reversible, the deactivation being magnesium-dependent. Protein phosphatase fractions from heart and liver active against phosphorylase a can reversibly deactivate adipose tissue hormone-sensitive lipase, implying a low degree of substrate specificity for lipase phosphatase.  相似文献   

2.
Lipolysis of intracellular triglycerides in the heart has been shown to be regulated by hormones. However, activation of myocardial triglyceride lipase in a cell-free system has not been directly demonstrated. In the present studies, initial attempts to demonstrate cAMP-dependent activation of triglyceride lipase using the 1,000 X g supernatant fraction (S1) of mouse heart homogenate were unsuccessful, presumably due to the masking effects of high levels of lipoprotein lipase activity even when assayed at pH 7.4 and in the absence of apolipoprotein C-II. Myocardial lipoprotein lipase in the 40,000 X g supernatant fraction was then removed by heparin-Sepharose affinity chromatography. The lipoprotein lipase-free fractions were shown to contain neutral triglyceride lipase and neutral cholesterol esterase of about equal activities. The triglyceride lipase and cholesterol esterase activities fell progressively during preincubation in the presence of 5 mM Mg2+. Additions of cAMP and ATP resulted in 40-70% activation of both triglyceride lipase and cholesterol esterase. The activation was blocked by protein kinase inhibitor and was restored by the addition of exogenous cAMP-dependent protein kinase. Since lipoprotein lipase has no activity toward cholesteryl oleate, activation of cholesterol esterase in untreated S1 was readily demonstrable. Both triglyceride lipase and cholesterol esterase activities were present in homogenates prepared from isolated rat heart myocytes. We conclude that the myocardium contains a hormone-sensitive lipase that is regulated in a fashion similar to that of the adipose tissue enzyme.  相似文献   

3.
The effect of insulin on the state of phosphorylation of hormone-sensitive lipase, cellular cAMP-dependent protein kinase activity and lipolysis was investigated in isolated adipocytes. Increased phosphorylation of hormone-sensitive lipase in response to isoproterenol stimulation was closely paralleled by increased lipolysis. Maximal phosphorylation and lipolysis was obtained when the cAMP-dependent protein kinase activity ratio was greater than or equal to 0.1, and this corresponded to a 50% increase in the state of phosphorylation of hormone-sensitive lipase. Insulin (1 nM) reduced cAMP-dependent protein kinase activity and also reduced lipolysis with both cAMP-dependent and cAMP-independent antilipolytic effects up to an activity ratio of approximately 0.4, above which the antilipolytic effect was lost. Insulin caused a decrease in the state of phosphorylation of hormone-sensitive lipase at all levels of cAMP-dependent protein kinase activity. Under basal conditions, with cAMP-dependent protein kinase activity at a minimum, this reflected a dephosphorylation of the basal phosphorylation site of hormone-sensitive lipase in a manner not mediated by cAMP. When the cAMP-dependent protein kinase was stimulated to phosphorylate the regulatory phosphorylation site of hormone-sensitive lipase, the insulin-induced dephosphorylation occurred both at the basal and regulatory sites. At low levels of cAMP-dependent protein kinase activity ratios (0.05-0.1), dephosphorylation of the regulatory site correlated with reduced cAMP-dependent protein kinase activity, but not at higher activity ratios (greater than 0.1). Stimulation of cells with isoproterenol produced a transient (1-5 min) peak of cAMP-dependent protein kinase activity and of phosphorylation of hormone-sensitive lipase. The state of phosphorylation also showed a transient peak when the protein kinase was maximally and constantly activated. In the presence of raised levels of cellular cAMP, insulin (1 nM) caused a rapid (t1/2 approximately 1 min) dephosphorylation of hormone-sensitive lipase. In unstimulated cells the reduction in phosphorylation caused by insulin was distinctly slower (t1/2 approximately 5 min). These findings are interpreted to suggest that insulin affects the state of phosphorylation of hormone-sensitive lipase and lipolysis through a cAMP-dependent pathway, involving reduction of cAMP, and through a cAMP-independent pathway, involving activation of a protein phosphatase activity that dephosphorylates both the regulatory and basal phosphorylation sites of hormone-sensitive lipase.  相似文献   

4.
Hormone-sensitive lipase catalyzes the rate-limiting step in the release of fatty acids from triacylglycerol-rich lipid storage droplets of adipocytes, which contain the body's major energy reserves. Hormonal stimulation of cAMP formation and the activation of cAMP-dependent protein kinase leads to the phosphorylation of hormone-sensitive lipase and a large increase in lipolysis in adipocytes. By contrast, phosphorylation of hormone-sensitive lipase by the kinase in vitro results in a comparatively minor increase in catalytic activity. In this study, we investigate the basis for this discrepancy by using immunofluorescence microscopy to locate hormone-sensitive lipase in lipolytically stimulated and unstimulated 3T3-L1 adipocytes. In unstimulated cells, hormone-sensitive lipase is diffusely distributed throughout the cytosol. Upon stimulation of cells with the beta-adrenergic receptor agonist, isoproterenol, hormone-sensitive lipase translocates from the cytosol to the surfaces of intracellular lipid droplets concomitant with the onset of lipolysis, as measured by the release of glycerol to the culture medium. Both hormone-sensitive lipase translocation and lipolysis are reversed by the incubation of cells with the beta-adrenergic receptor antagonist, propranolol. The treatment of cells with cycloheximide fails to inhibit lipase translocation or lipolysis, indicating that the synthesis of nascent proteins is not required. Cytochalasin D and nocodazole used singly and in combination also failed to have a major effect, thus suggesting that the polymerization of microfilaments and microtubules and the formation of intermediate filament networks is unnecessary. Hormone-sensitive lipase translocation and lipolysis were inhibited by N-ethylmaleimide and a combination of deoxyglucose and sodium azide. We propose that the major consequence of the phosphorylation of hormone-sensitive lipase following the lipolytic stimulation of adipocytes is the translocation of the lipase from the cytosol to the surfaces of lipid storage droplets.  相似文献   

5.
Both temperature-stable and temperature-labile testicular cholesteryl ester hydrolases are shown to be regulated by an endogenous cAMP-dependent protein kinase activity. The temperature-stable form (Mr = 28,000) was activated 3-fold by the endogenous kinase. This activation was completely blocked by protein kinase inhibitor. Following purification by high performance gel permeation chromatography, the temperature-stable form could also be activated 2-fold by bovine heart protein kinase, type I. The partially purified endogenous protein kinase, type I, which was completely separated from hydrolase activity by ion exchange chromatography, increased hydrolase activity 2-fold in the presence of optimal concentrations of cAMP, ATP, and Mg2+. Cholesteryl ester hydrolase activity could be stabilized indefinitely at -10 degrees C with the addition of 0.1 mM thioglycolate, but not by other thiol reagents. In contrast, the endogenous protein kinase activity was lost from 104,000 X g supernatants after 14 days. However, the property of activation could be restored by addition of bovine heart protein kinase. The temperature-labile hydrolase (Mr = 72,000) could be totally inactivated by a Mg2+-dependent, fluoride-sensitive cytosolic factor and reactivated by cAMP-dependent protein kinase. These observations strongly suggest that the inactivating factor is a phosphoprotein phosphatase.  相似文献   

6.
An in vitro model to study adipose differentiation in serum-free medium   总被引:7,自引:0,他引:7  
Adipose differentiation was studied in a teratoma-derived fibroadipogenic cell line (1246) cultured in serum-free medium. The addition of dexamethasone and 1-methyl-3-isobutylxanthine to the serum-free medium induced confluent 1246 cells to differentiate into adipocyte-like cells as evidenced by triglyceride accumulation and increased levels of lipolytic enzyme activities. Hormone-sensitive lipase activity measured 5 days after the addition of dexamethasone and 1-methyl-3-isobutylxanthine increased 17-fold and was activated by cAMP-dependent protein kinase. Neutral diglyceride lipase, monoglyceride lipase, and cholesterol ester hydrolase specific activities increased 23-, 75-, and 73-fold, respectively. Among these three activities, only cholesterol ester hydrolase was activated by cAMP-dependent protein kinase. Differentiated 1246 cells expressed receptors to lipolytic hormones as shown by the stimulation of glycerol release by epinephrine (8.6-fold), glucagon (2.2-fold), and adrenocorticotrophic hormone (5.5-fold). Heparin treatment of 1246 cells in serum-free medium resulted in the release of lipoprotein lipase activity into the culture medium. Thus, 1246 cells can serve as a model for the study of adipose differentiation under defined culture conditions since they are capable of growth and survival in the absence of serum while retaining their ability to differentiate into adipocytes.  相似文献   

7.
The reversible deactivation of chicken adipose tissue hormone-sensitive lipase alpha(previously activated with Mg2+ ATP and adenosine 3':5'-monophosphate) required Mg2+ and was inhibited by phosphate. These results are consistent with the assumption that deactivation of the protein kinase-activated enzyme is catalyzed by a lipase phosphatase. Cholesterol ester is catalyzed by a lipase phosphatase. Cholesterol ester hydrolase similarly was activated and reversibly deactivated. The activity of endogenous lipase phosphatase in pH 5.2 precipitate fractions was reduced, and in some cases eliminated, by incubation at 50 degrees for 20 min in buffer containing 20% glycerol. Heating at 50 degrees greatly increased the apparent percentage activation of triglyceride and cholesterol ester hydrolases but this was due to a selective decrease in basal (nonactivated) hydrolase activities. Essentially all endogenous lipase phosphatase could be removed by treatment of the pH 5.2 precipitate fraction with ATP-Sepharose affinity gel. The addition of a partially purified preparation of rat liver phosphorylase phosphatase deactivated triglyceride and cholesterol ester hydrolases. The deactivation process was concentration, 5 mM) and was inhibited by 5 mM phosphate and by phosphorylase alpha. Reversible deactivation of hormone-sensitive lipase alpha was also observed with crude prepa- and by phosphorylase alpha. Reversible deactivation of hormone-sensitive lipas alpha was also observed with crude preparations of phosphoprotein phosphatases from rat and turkey hearts, and from rat epididymal fat pads. Thus, hormone-sensitive lipase is deactivated by a variety of phosphoprotein phosphatases from different tissues and different species, implying a low degree of specificity for the deactivating system.  相似文献   

8.
Hormone-sensitive lipase is phosphorylated at a single site (site 2) in vitro by the AMP-activated protein kinase, without any direct effect on the activity of the enzyme. The amino acid sequence around this site has been determined. Ca2+/calmodulin-dependent protein kinase II also phosphorylates hormone-sensitive lipase predominantly at this site, whilst cyclic-GMP-dependent protein kinase phosphorylates exclusively the regulatory site (site 1) which is also phosphorylated by cyclic-AMP-dependent protein kinase. Phosphorylation of site 2 has been found to inhibit subsequent phosphorylation and activation of hormone-sensitive lipase by the cyclic-AMP-dependent and cyclic-GMP-dependent protein kinases, indicating that site-2 phosphorylation may have an antilipolytic role in vivo.  相似文献   

9.
Triacylglycerol lipase activity in the rabbit renal medulla   总被引:1,自引:0,他引:1  
Although the renal medulla is rich in triacylglycerols, the lipolysis of these intracellular triacylglycerols by a renomedullary triacylglycerol lipase has not been directly demonstrated. The present study demonstrates triacylglycerol lipase activity localized in the particulate subcellular fractions of rabbit renal medullae. Renomedullary triacylglycerol lipase activity, as determined by the hydrolysis of [14C]triolein to [14C]oleic acid, was observed to have a pH optimum of 5.8. Addition of cAMP/ATP/magnesium acetate resulted in an 80% activation of crude homogenate triacylglycerol lipase activity; addition of exogenous cAMP-dependent protein kinase resulted in a further activation of lipolysis. 3 mM CaCl2 had no effect on basal triacylglycerol lipase activity. 1 M NaCl did not inhibit lipolysis, suggesting that the lipase activity measured was not due to lipoprotein lipase. Endogenous renomedullary triacylglycerols were hydrolysed by a lipase in the 100,000 X g pellet of renomedullary homogenates, resulting in the release of free fatty acids including arachidonic and adrenic acids. Dispersed renomedullary cells were prepared to monitor hormone-sensitive triacylglycerol lipase activity in intact cells. Addition of 10 microM forskolin and 10 microM epinephrine resulted in 8-fold and 50-fold increases in triacylglycerol lipase activity, respectively, as defined by release of free glycerol from the cells. These studies demonstrate that a cAMP-dependent hormone-sensitive triacylglycerol lipase is present in the renal medulla, and is responsible for the hydrolysis of renomedullary triacylglycerols.  相似文献   

10.
Hormone-sensitive lipase partially purified from adipose tissue of laying hens was markedly activated by cyclic AMP-dependent protein kinase. Activation was approximately 4-fold (ranging up to as great as 10-fold) compared with the much lower degree of activation obtained with analogous preparations from rat and human adipose tissues (59 and 86%, respectively). The partially purified preparations contained adequate endogenous protein kinase activity to effect complete activation with addition of cyclic AMP, ATP, and Mg(2+). Activation was blocked by protein kinase inhibitor (from rabbit skeletal muscle) but could be restored fully by addition of excess exogenous protein kinase (from bovine skeletal muscle). The fully activated lipase was slowly deactivated by dialysis at 4 degrees C and then rapidly and almost fully reactivated by addition of cyclic AMP and ATP-Mg(2+). Reactivation was blocked by protein kinase inhibitor. This deactivation-reactivation cycle was rapid at 23 degrees C with dialysis against charcoal and could be demonstrated repeatedly using a single preparation. The reversible deactivation of protein kinase-activated enzyme is presumed to reflect the action of a lipase phosphatase. Lipase prepared from tissue previously exposed to glucagon yielded a much smaller degree of activation than lipase prepared from tissue not exposed to the lipolytic hormone, indicating that the physiological hormone-induced activation is probably similar to or identical with the protein kinase activation demonstrated in the cell-free preparations. Under the conditions of assay used, the partially purified lipase fraction contained diglyceride, monoglyceride, and lipoprotein lipase activities. However, treatment with cyclic AMP-dependent protein kinase had virtually no effect on these lipase activities.  相似文献   

11.
Izawa T  Nomura S  Kizaki T  Oh-ishi S  Ookawara T  Ohno H 《Life sciences》2000,66(25):PL359-PL364
Papaverine, despite being a potent phosphodiesterase inhibitor, actually blocks adipocyte lipolysis. The present study was designed to clarify the mechanism of the inhibitory effect of papaverine on lipolysis. Lipolysis, stimulated by either 10 microM isoproterenol or 5 mM dibutyryl cAMP, was significantly inhibited by papaverine (100 microM and above). Papaverine, however, did not affect the isoproterenol-induced increase in the protein kinase A (A-kinase) activity ratio. In cell-free extract from non-stimulated adipocytes, cAMP-stimulated A-kinase activities were almost completely blocked by H-89, a potent inhibitor of A-kinase, but not by papaverine. Thus, the inhibitory effect of papaverine on lipolysis could be responsible for a deficit in step(s) distal to A-kinase activity. Hormone-sensitive lipase activities in the infranatant fraction of centrifuged homogenates of cells, which were maximally stimulated with isoproterenol were significantly reduced. This result indicates that hormone-sensitive lipase redistributes from cytosol to its substrate in lipolytically stimulated cells. Papaverine completely blocked the isoproterenol-induced decrease in lipase activity in the infranatant fraction. These results suggest that papaverine blocks lipolysis through its inhibitory effect on the redistribution of hormone-sensitive lipase.  相似文献   

12.
A triglyceride lipase was extracted from defatted pig adipose tissue powder with dilute ammonia and purified about 230-fold by a combination of ammonium sulfate fractionation, heparin-Sepharose 4B, DEAE-cellulose, and Sephadex G-150 column chromatographies and isoelectrofocusing electrophoresis. The enzyme was distinguishable in physical and kinetic properties from the two previously defined lipases in adipose tissue, lipoprotein lipase, and hormone-sensitive lipase. The purified enzyme was fully active in the absence of serum lipoprotein and was not stimulated by adenosine 3':5'-monophosphate-dependent protein kinase. In marked contrast to the already defined lipases, the enzyme was strongly inhibited by serum albumin. The enzyme had a molecular weigt of about 43,000, a pI of 5.2, and pH optimum of 7.0. The enzyme hydrolyzed triolein to oleic acid and glycerol, and did not exhibit esterase activity. The apparent Km for triolein was 0.05 mM. Physiological roles of this new species of lipase remained to be explored.  相似文献   

13.
3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

14.
Activation of cAMP-dependent protein kinase II by static and dynamic steady-state cAMP levels was studied by reconstituting an in vitro model system composed of hormone-sensitive adenylate cyclase, cyclic nucleotide phosphodiesterase, and cAMP-dependent protein kinase II. The rates of cAMP synthesis were regulated by incubating isolated membranes from AtT20 cells with various concentrations of forskolin. In the presence of 3-methylisobutylxanthine, the rate of protein kinase activation was proportional to the rate at which cAMP was synthesized, and there was a direct relationship between the degree of activation and the level of cAMP produced. The activation profiles of protein kinase generated in the presence of exogenous cAMP or cAMP produced by activation of adenylate cyclase in the absence of cAMP degradation were indistinguishable. Dynamic steady-state levels of cAMP were achieved by incubating the membranes with forskolin in the presence of purified cyclic nucleotide phosphodiesterase. Under these conditions, the apparent activation constant of protein kinase II for cAMP was reduced by 65-75%. This increased sensitivity to activation by cAMP was seen when phosphotransferase activity was measured directly in reaction mixtures containing membranes, protein kinase, and histone H2B or when regulatory and catalytic subunits were first separated by immunoprecipitation of holoenzyme and regulatory subunits with specific anti-serum. Our results are consistent with the hypothesis that rapid cAMP turnover may function as a mechanism for amplifying hormonal signals which use the cAMP-dependent protein kinase system.  相似文献   

15.
Chaves VE  Frasson D  Kawashita NH 《Biochimie》2011,93(10):1631-1640
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.  相似文献   

16.
17.
A triglyceride lipase different from lipoprotein lipase, but measurable only after intravenous heparin injection, has been isolated from human plasma by sequential use of heparin-Sepharose and concanavalin A-Sepharose affinity chromatography. Using these procedures, phospholipase A1 activity was found to chromatograph identically with the triglyceride lipase. The constancy of the ratio of activities after isoelectric focusing (pI 4.1) and during thermal deactivation indicates that this enzyme has hydrolase activity against both triglycerides and phospholipids. This conclusion was supported further by the homogeneity of the protein as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

18.
Analysis of Saccharomyces cerevisiae genome revealed no sequence homologous to cyclic GMP (cGMP) dependent protein kinase from other organisms. Here we demonstrate that cyclic AMP (cAMP) dependent protein kinase purified from S. cerevisiae was almost equally activated by cAMP and cGMP in 3 x 10(-6) M concentrations of either nucleotide in the presence of Mg2+ ions. Interestingly, if Mn2+ ions were used instead of Mg2+, cGMP was only 30% as effective as cAMP in the activation of cAMP-dependent protein kinase. Analogs of cAMP such as 8-chloro-cAMP and 3':5'-cyclic monophosphate of ribofuranosylbenzimidazole were as potent as cAMP in the enzyme activation, while N6,2'-O-dibutyryl-cAMP activated the enzyme to a lower extent. It was also found that yeast cAMP-dependent protein kinase can be activated by limited proteolytic digestion. The results presented were obtained with protamine and ribosomal protein S10 used as phosphorylation substrates.  相似文献   

19.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

20.
Hormone-sensitive lipase of rat adipose tissue was partially purified. The enzyme retained its capacity to be activated by cyclic AMP-dependent protein kinase throughout purification. When the partially purified 32P-labeled preparation was subjected to two-dimensional gel electrophoresis, the enzyme activity was found to be associated with a 32P-labeled protein of molecular weight 84 000. The result suggests that this 32P-labeled protein represents hormone-sensitive lipase or the catalytic subunit of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号