首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical models of the parasagittal human skull/brain have been tested to investigate whether the cerebral ventricles provide natural protection of the brain by relieving strain during head rotation. A sophisticated model included anatomical structures, and a semicircular model consisted of a cylinder divided into two semicircles. Silicone gel simulated the brain and was detached from the vessel by a layer of liquid paraffin simulating the cerebrospinal fluid. Both models were run with and without an elliptical inclusion filled with liquid paraffin simulating a cerebral ventricle. The 2D models were exposed to angular acceleration by a pendulum impact causing 7600 rad/s2 peak rotational acceleration with 6 ms pulse duration. After rotating 100 degrees, the models were decelerated during 30 ms. The trajectory of grid markers was analyzed from high-speed video (1000 frames/s). Rigid-body displacement, shear strain and principal strain were determined from the displacement of three-point sets inferior and superior to the ventricle. For the subventricular (inferior) region in the sophisticated model, approximately 40% lower peak strain values were obtained in the model with ventricle than in the one without. Subcortical displacement was reduced by 12%. Corresponding strain reduction in the subcortical (superior) region was approximately 40% following the acceleration and 25% following the deceleration. Similar but less pronounced effects were found for the semicircular model. The lateral ventricles play an important role as strain relievers and provide natural protection against brain injury.  相似文献   

2.

Finite element head (FE) models are important numerical tools to study head injuries and develop protection systems. The generation of anatomically accurate and subject-specific head models with conforming hexahedral meshes remains a significant challenge. The focus of this study is to present two developmental works: first, an anatomically detailed FE head model with conforming hexahedral meshes that has smooth interfaces between the brain and the cerebrospinal fluid, embedded with white matter (WM) fiber tracts; second, a morphing approach for subject-specific head model generation via a new hierarchical image registration pipeline integrating Demons and Dramms deformable registration algorithms. The performance of the head model is evaluated by comparing model predictions with experimental data of brain–skull relative motion, brain strain, and intracranial pressure. To demonstrate the applicability of the head model and the pipeline, six subject-specific head models of largely varying intracranial volume and shape are generated, incorporated with subject-specific WM fiber tracts. DICE similarity coefficients for cranial, brain mask, local brain regions, and lateral ventricles are calculated to evaluate personalization accuracy, demonstrating the efficiency of the pipeline in generating detailed subject-specific head models achieving satisfactory element quality without further mesh repairing. The six head models are then subjected to the same concussive loading to study the sensitivity of brain strain to inter-subject variability of the brain and WM fiber morphology. The simulation results show significant differences in maximum principal strain and axonal strain in local brain regions (one-way ANOVA test, p < 0.001), as well as their locations also vary among the subjects, demonstrating the need to further investigate the significance of subject-specific models. The techniques developed in this study may contribute to better evaluation of individual brain injury and the development of individualized head protection systems in the future. This study also contains general aspects the research community may find useful: on the use of experimental brain strain close to or at injury level for head model validation; the hierarchical image registration pipeline can be used to morph other head models, such as smoothed-voxel models.

  相似文献   

3.
Recognizing the association of angular loading with brain injuries and inconsistency in previous studies in the application of the biphasic loads to animal, physical, and experimental models, the present study examined the role of the acceleration-deceleration pulse shapes on region-specific strains. An experimentally validated two-dimensional finite element model representing the adult male human head was used. The model simulated the skull and falx as a linear elastic material, cerebrospinal fluid as a hydrodynamic material, and cerebrum as a linear viscoelastic material. The angular loading matrix consisted coronal plane rotation about a center of rotation that was acceleration-only (4.5 ms duration, 7.8 krad/s/s peak), deceleration-only (20 ms, 1.4 krad/s/s peak), acceleration-deceleration, and deceleration-acceleration pulses. Both biphasic pulses had peaks separated by intervals ranging from 0 to 25 ms. Principal strains were determined at the corpus callosum, base of the postcentral sulcus, and cerebral cortex of the parietal lobe. The cerebrum was divided into 17 regions and peak values of average maximum principal strains were determined. In all simulations, the corpus callosum responded with the highest strains. Strains were the least under all simulations in the lower parietal lobes. In all regions peak strains were the same for both monophase pulses suggesting that the angular velocity may be a better metric than peak acceleration or deceleration. In contrast, for the biphasic pulse, peak strains were region- and pulse-shape specific. Peak values were lower in both biphasic pulses when there was no time separation between the pulses than the corresponding monophase pulse. Increasing separation time intervals increased strains, albeit non-uniformly. Acceleration followed by deceleration pulse produced greater strains in all regions than the other form of biphasic pulse. Thus, pulse shape appears to have an effect on regional strains in the brain.  相似文献   

4.
Two-dimensional (2-D) strain fields were estimated non-invasively in two simple experimental models of closed-head brain injury. In the first experimental model, shear deformation of a gel was induced by angular acceleration of its spherical container In the second model the brain of a euthanized rat pup was deformed by indentation of its skull. Tagged magnetic resonance images (MRI) were obtained by gated image acquisition during repeated motion. Harmonic phase (HARP) images corresponding to the spectral peaks of the original tagged MRI were obtained, following procedures proposed by Osman, McVeigh and Prince. Two methods of HARP strain analysis were applied, one based on the displacement of tag line intersections, and the other based on the gradient of harmonic phase. Strain analysis procedures were also validated on simulated images of deformed grids. Results show that it is possible to visualize deformation and to quantify strain efficiently in animal models of closed head injury.  相似文献   

5.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

6.
An analytical model of traumatic diffuse brain injury   总被引:3,自引:0,他引:3  
Diffuse axonal injury (DAI) with prolonged coma has been produced in the primate using an impulsive, rotational acceleration of the head without impact. This pathophysiological entity has been studied subsequently from a biomechanics perspective using physical models of the skull-brain structure. Subjected to identical loading conditions as the primate, these physical models permit one to measure the deformation within the surrogate brain tissue as a function of the forces applied to the head. An analytical model designed to approximate these experiments has been developed in order to facilitate an analysis of the parameters influencing brain deformation. These three models together are directed toward the development of injury tolerance criteria based upon the shear strain magnitude experienced by the deep white matter of the brain. The analytical model geometry consists of a rigid, right-circular cylindrical shell filled with a Kelvin-Voigt viscoelastic material. Allowing no slip on the boundary, the shell is subjected to a sudden, distributed, axisymmetric, rotational load. A Fourier series representation of the load allows unrestricted load-time histories. The exact solution for the relative angular displacement (V) and the infinitesimal shear strain (epsilon) at any radial location in the viscoelastic material with respect to the shell was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
M Michejda 《Acta anatomica》1975,91(1):110-117
Cross-sectional studies of the degree of the cranial base flexion were carried out in infant, juvenile and adult skulls in four genera of nonhuman primates (P. paniscus, H. lar, P. urinus, and M. mullatta). The cephalometric observations of the cranial base included linear and angular measurements of each specimen. The data obtained in this study showed that the anterior portion of the cranial base exhibits a significant shortening trend as the mammalian evolutionary scale ascends. Moreover, the growth pattern of the anterior portion of the skull base follows that of the facial bony structures. The ontogenic growth changes of the posterior portion of the skull base follows the growth pattern of the endocranial cavity. The significant trend of elongation in this area directly contributes to the posterior migration of the foramen magnum. The magnitude of these growth changes decreases as the evolutionary scale ascends. The angular measurements of the cranial flexion showed a less obtuse cranial base angle in young specimens and the ones higher on the mammalian scale. The skull kyphosis was less pronounced in these specimens and the anatomical features of the cranial base were more humanlike, including the balance of the head expressed by the position of the foramen magnum.  相似文献   

8.
Physical model simulations of brain injury in the primate   总被引:20,自引:0,他引:20  
Diffuse brain injuries resulting from non-impact rotational acceleration are investigated with the aid of physical models of the skull-brain structure. These models provide a unique insight into the relationship between the kinematics of head motion and the associated deformation of the surrogate brain material. Human and baboon skulls filled with optically transparent surrogate brain tissue are subjected to lateral rotations like those shown to produce diffuse injury to the deep white matter in the brain of the baboon. High-speed cinematography captures the deformations of the grids embedded within the surrogate brain tissue during the applied load. The overall deformation pattern is compared to the pathological portrait of diffuse brain injury as determined from animal studies and autopsy reports. Shear strain and pathology spatial distributions mirror each other. Load levels and resulting surrogate brain tissue deformations are related from one species to the other. Increased primate brain mass magnified the strain amplified without significantly altering the spatial distribution. An empirically-derived value for a critical shear strain associated with the onset of severe diffuse axonal injury in primates is determined, assuming constitutive similarity between baboon and human brain tissue. The primate skull physical model data and the critical shear strain associated with the threshold for severe diffuse axonal injury were used to scale data obtained from previous studies to man, and thus derive a diffuse axonal injury tolerance for rotational acceleration for humans.  相似文献   

9.
The mechanical properties of the adult human skull are well documented, but little information is available for the infant skull. To determine the age-dependent changes in skull properties, we tested human and porcine infant cranial bone in three-point bending. The measurement of elastic modulus in the human and porcine infant cranial bone agrees with and extends previous published data [McPherson, G. K., and Kriewall, T. J. (1980), J. Biomech., 13, pp. 9-16] for human infant cranial bone. After confirming that the porcine and human cranial bone properties were comparable, additional tensile and three-point bending studies were conducted on porcine cranial bone and suture. Comparisons of the porcine infant data with previously published adult human data demonstrate that the elastic modulus, ultimate stress, and energy absorbed to failure increase, and the ultimate strain decreases with age for cranial bone. Likewise, we conclude that the elastic modulus, ultimate stress, and energy absorbed to failure increase with age for sutures. We constructed two finite element models of an idealized one-month old infant head, one with pediatric and the other adult skull properties, and subjected them to impact loading to investigate the contribution of the cranial bone properties on the intracranial tissue deformation pattern. The computational simulations demonstrate that the comparatively compliant skull and membranous suture properties of the infant brain case are associated with large cranial shape changes, and a more diffuse pattern of brain distortion than when the skull takes on adult properties. These studies are a fundamental initial step in predicting the unique mechanical response of the pediatric skull to traumatic loads associated with head injury and, thus, for defining head injury thresholds for children.  相似文献   

10.

Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain–skull interaction. Nevertheless, the brain–skull interface has been largely simplified in previous three-dimensional head models without accounting for the fluid behaviour of the cerebrospinal fluid (CSF) and its mechanical interaction with the brain and skull. In this study, the brain–skull interface in a previously developed head model is modified as a fluid–structure interaction (FSI) approach, in which the CSF is treated on a moving mesh using an arbitrary Lagrangian–Eulerian multi-material formulation and the brain on a deformable mesh using a Lagrangian formulation. The modified model is validated against brain–skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain–skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain–skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.

  相似文献   

11.
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.  相似文献   

12.
Deformation of the human brain induced by mild angular head acceleration   总被引:1,自引:0,他引:1  
Deformation of the human brain was measured in tagged magnetic resonance images (MRI) obtained dynamically during angular acceleration of the head. This study was undertaken to provide quantitative experimental data to illuminate the mechanics of traumatic brain injury (TBI). Mild angular acceleration was imparted to the skull of a human volunteer inside an MR scanner, using a custom MR-compatible device to constrain motion. A grid of MR "tag" lines was applied to the MR images via spatial modulation of magnetization (SPAMM) in a fast gradient echo imaging sequence. Images of the moving brain were obtained dynamically by synchronizing the imaging process with the motion of the head. Deformation of the brain was characterized quantitatively via Lagrangian strain. Consistent patterns of radial-circumferential shear strain occur in the brain, similar to those observed in models of a viscoelastic gel cylinder subjected to angular acceleration. Strain fields in the brain, however, are clearly mediated by the effects of heterogeneity, divisions between regions of the brain (such as the central fissure and central sulcus) and the brain's tethering and suspension system, including the dura mater, falx cerebri, and tentorium membranes.  相似文献   

13.
Playgrounds surface test standards have been introduced to reduce the number of fatal and severe injuries. However, these test standards have several simplifications to make it practical, robust and cost-effective, such as the head is represented with a hemisphere, only the linear kinematics is evaluated and the body is excluded. Little is known about how these simplifications may influence the test results. The objective of this study was to evaluate the effect of these simplifications on global head kinematics and head injury prediction for different age groups. The finite element human body model PIPER was used and scaled to seven different age groups from 1.5 up to 18 years old, and each model was impacted at three different playground surface stiffness and three head impact locations. All simulations were performed in pairs, including and excluding the body. Linear kinematics and skull bone stress showed small influence if excluding the body while head angular kinematics and brain tissue strain were underestimated by the same simplification. The predicted performance of the three different playground surface materials, in terms of head angular kinematics and brain tissue strain, was also altered when including the body. A body and biofidelic neck need to be included, together with suitable head angular kinematics based injury thresholds, in future physical or virtual playground surface test standards to better prevent brain injuries.  相似文献   

14.
Human head dynamic response to side impact by finite element modeling   总被引:6,自引:0,他引:6  
The dynamic response of the human head to side impact was studied by 2-dimensional finite element modeling. Three models were formulated in this study. Model I is an axisymmetric model. It simulated closed shell impact of the human head, and consisted of a single-layered spherical shell filled wiht an inviscid fluid. The other two models (Model II and III) are plane strain models of a coronal section of the human head. Model II approximated a 50th percentile male head by an outer layer to simulate cranial bone and an inviscid interior core to simulate the intracranial contents. The configuration of Model III is the same as Model II but more detailed anatomical features of the head interior were added, such as, cerebral spinal fluid (CSF); falx cerebri, dura, and tentorium. Linear elastic material properties were assigned to all three models. All three models were loaded by a triangular pulse with a peak pressure of 40 kPa, effectively producing a peak force of 1954 N (440 lb). The purpose of this study was to determine the effects of the membranes and that of the mechanical properties of the skull, brain, and membrane on the dynamic response of the brain during side impact, and to compare the pressure distributions from the plane strain model with the axisymmetric model. A parametric study was conducted on Model II to characterize fully its response to impact under various conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave–head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue–material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.  相似文献   

16.
Bone conduction (BC) sound is the perception of sound transmitted in the skull bones and surrounding tissues. To better understand BC sound perception and the interaction with surrounding tissues, the power transmission of BC sound is investigated in a three-dimensional finite-element model of a whole human head. BC sound transmission was simulated in the FE model and the power dissipation as well as the power flow following a mechanical vibration at the mastoid process behind the ear was analyzed. The results of the simulations show that the skull bone (comprises the cortical bone and diploë) has the highest BC power flow and thereby provide most power transmission for BC sound. The soft tissues was the second most important media for BC sound power transmission, while the least BC power transmission is through the brain and the surrounding cerebrospinal fluid (CSF) inside the cranial vault. The vibrations transmitted in the skull are mainly concentrated at the skull base when the stimulation is at the mastoid. Other vibration transmission pathways of importance are located at the occipital bone at the posterior side of the head while the transmission of sound power through the face, forehead and vertex is minor. The power flow between the skull bone and skull interior indicate that some BC power is transmitted to and from the skull interior but the transmission of sound power through the brain seem to be minimal and only local to the brain–bone interface.  相似文献   

17.
Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of “many-to-one” association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.  相似文献   

18.
Sutures form an integral part of the functioning skull, but their role has long been debated among vertebrate morphologists and palaeontologists. Furthermore, the relationship between typical skull sutures, and those involved in cranial kinesis, is poorly understood. In a series of computational modelling studies, complex loading conditions obtained through multibody dynamics analysis were imposed on a finite element model of the skull of Uromastyx hardwickii, an akinetic herbivorous lizard. A finite element analysis (FEA) of a skull with no sutures revealed higher patterns of strain in regions where cranial sutures are located in the skull. From these findings, FEAs were performed on skulls with sutures (individual and groups of sutures) to investigate their role and function more thoroughly. Our results showed that individual sutures relieved strain locally, but only at the expense of elevated strain in other regions of the skull. These findings provide an insight into the behaviour of sutures and show how they are adapted to work together to distribute strain around the skull. Premature fusion of one suture could therefore lead to increased abnormal loading on other regions of the skull causing irregular bone growth and deformities. This detailed investigation also revealed that the frontal-parietal suture of the Uromastyx skull played a substantial role in relieving strain compared with the other sutures. This raises questions about the original role of mesokinesis in squamate evolution.  相似文献   

19.
A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid–structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.  相似文献   

20.
Relative size and arrangement of the brain and paired sense organs are examined in three species of Thorius, a genus of minute, terrestrial salamanders that are among the smallest extant tailed tetrapods. Analogous measurements of representative species of three related genera of larger tropical (Pseudoeurycea, Chiropterotriton) and temperate (Plethodon) salamanders are used to identify changes in gross morphology of the brain and sense organs that have accompanied the evolution of decreased head size in Thorius and their relation to associated changes in skull morphology. In adult Thorius, relative size (area measured in frontal plane, and length) of the eyes, otic capsules, and brain each is greater than in adults of all of the larger genera; relative size of the nasal capsules is unchanged or slightly smaller. Interspecific scaling phenomena--negative allometry of otic capsule, eye and brain size, isometry or slight positive allometry of nasal capsule size, all with respect to skull length--also are characteristic of intraspecific (ontogenetic) comparisons in both T. narisovalis and Pseudoeurycea goebeli. Predominance of the brain and eyes in Thorius results in greater contact and overlap among these structures and the nasal capsules in the anterior portion of the head. This is associated with anterior displacement of both the eyes and nasal capsules, which now protrude anterior to the skull proper; a change in eye shape; and medial deformation of anterior braincase walls. Posteriorly, predominance of the otic capsules has effected a reorientation of the jaw suspensorium to a fully vertical position that is correlated with the novel presence of a posteriorly directed squamosal process and shift in origin of the quadropectoralis muscle. Many of these changes in cranial morphology may be explained simply as results of mechanical (physical) interactions among the skeletal, nervous, and sensory components during head development at reduced size. This provides further evidence of the role of nervous, sensory, and other "soft" tissues in cranial skeletal morphogenesis, and reinforces the need to consider these tissues in analyses of skull evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号