首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the model of isolated acini the effect of cytochalasin D (CD) on rat pancreatic secretion in vitro was studied. The influence of CD (0.01-10 micrograms/ml = 0.02-19.7 microM) on amylase secretion and 3H-pulse-labelled protein release was measured under two sets of conditions: (a) basal, and (b) stimulated by 77pM caerulein. Basal secretion was not altered, but stimulated secretion of amylase and 3H-labelled proteins were similarly inhibited by up to 45%. It is concluded that CD affects only exocytosis of zymogen granules and not intracellular transport.  相似文献   

2.
Mouse pancreatic acini were permeabilized with streptolysin O to investigate amylase secretion stimulated by various intracellular mediators and the kinetics of secretion as a function of temperature. Amylase secretion was temperature dependent in that the initial rate of Ca2(+)-stimulated secretion increased with increasing temperature. In addition, there was no enhancement of Ca2(+)-stimulated secretion by GTP[gamma S] at 14 degrees C, while enhancement was maximal at 30 degrees C. GTP[gamma S]-mediated enhancement of secretion at a given temperature was mostly due to sustained secretion with a small increase in secretory rate. At 30 degrees C Ca2(+)-stimulated secretion was also enhanced by cAMP and phorbol ester (TPA) to similar extents as by GTP[gamma S]. The maximally effective concentration of cAMP was 1-10 microM in the presence of 0.1 mM isobutylmethylxanthine. The enhancements of Ca2(+)-stimulated amylase secretion by all combinations of cAMP (100 microM plus 0.1 mM isobutylmethylxanthine), TPA (1 microM), and GTP[gamma S] (30 microM) were fully additive. In Ca2(+)-free buffer, cAMP, TPA or GTP[gamma S] individually had no effect on amylase secretion. Together, TPA and GTP[gamma S] stimulated Ca2(+)-independent secretion, which was 187 +/- 38% of basal. Cyclic AMP together with TPA and GTP[gamma S] in the absence of Ca2+ stimulated 329 +/- 30% of basal secretion. Ca2(+)-stimulated amylase secretion was decreased about 50% by metabolic inhibition, while the enhancement by cAMP, TPA or GTP[gamma S] was totally blocked by metabolic inhibitors. These data demonstrate that amylase secretion in the acinar cell is mediated by multiple intracellular pathways which act in parallel and probably converge at a distal step in the exocytotic process.  相似文献   

3.
The effects of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) on amylase secretion and cytoplasmic free calcium concentration ([Ca2+]i) were investigated in dispersed guinea pig pancreatic acini. Carbachol evoked dose-dependent increases in amylase secretion and [Ca2+]i with half-maximal responses at 2.5 and 5 microM, respectively. Carbachol-induced calcium transients could be blocked by atropine. In the presence of a maximal effective dose of carbachol, cholecystokinin octapeptide caused no further increase in [Ca2+]i, suggesting that both agonists act on the same pool of trigger calcium. TPA (10(-9)-10(-6) M) stimulated amylase secretion with no change in [Ca2+]i. Maximum amylase secretion occurred at 0.5 microM TPA. Preincubation of acini in the presence of TPA resulted in a time- and dose-dependent inhibition (IC50 = 30 nM) of the carbachol-induced rise in [Ca2+]i, the maximal effect being observed within 3 min. The inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate was ineffective in inhibiting the carbachol-stimulated rise in [Ca2+]i. These findings suggest that, in addition to stimulating amylase secretion, probably through protein kinase C, TPA may also exert a negative feedback control over secretagogue-induced calcium transients.  相似文献   

4.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

5.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

6.
Dibutyryl cyclic GMP (Bu2cGMP) inhibited agonist-induced secretion of amylase from isolated rat pancreatic acini. In contrast to previous studies, this inhibitory action was not confined to butyryl derivatives of cyclic GMP, since the membrane-permeant cyclic GMP analogues Bu2cGMP and cyclic 8-bromo-GMP (8-Br-cGMP) were equipotent (IC50 2 nM) in their inhibition of amylase secretion stimulated by cholecystokinin-(26-33)-octapeptide (CCK8): at extracellular concentrations up to 1 mM, cyclic GMP itself was devoid of inhibitory activity. Both Bu2cGMP and 8-Br-cGMP also potently inhibited secretion stimulated by 4 beta-phorbol 12-myristate 13-acetate (PMA) (IC50 6 nM), but only partially inhibited responses elicited by bethanechol or bombesin and were without effect on A23187-evoked secretion. Furthermore, agents that are known to raise intracellular cyclic GMP levels (MB22948 (2-o-propoxyphenyl-8-azapurin-6-one) or nitroprusside) or antagonize the actions of protein kinase C (4 alpha-PMA or staurosporine), also inhibited CCK8- or PMA-stimulated secretion but not secretion elicited by bombesin, bethanechol, or A23187. It is concluded from these and other observations reported here that protein kinase C is the major intracellular mediator of amylase secretion stimulated by CCK8 and that this pathway may be regulated by cyclic GMP at a step that follows protein kinase C activation.  相似文献   

7.
Regulation of protein phosphorylation in isolated pancreatic acini by the intracellular messengers Ca2+ and diacylglycerol was studied by using the Ca2+ ionophore A23187 and the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate. As assessed by two-dimensional polyacrylamide-gel electrophoresis, the phorbol ester (1 microM) and Ca2+ ionophore (2 microM) altered the phosphorylation of distinct sets of proteins between Mr 83,000 and 23,000 in mouse and guinea-pig acini. The phorbol ester increased the phosphorylation of four proteins, whereas the ionophore increased the phosphorylation of two proteins and, in mouse acini, decreased the phosphorylation of one other protein. In addition, the phorbol ester and ionophore each caused the dephosphorylation of two proteins, of Mr 20,000 and 20,500. Administered together, these agents reproduced the changes in phosphorylation induced by the cholinergic agonist carbamoylcholine. The effects of the phorbol ester and ionophore on acinar amylase release were also studied. In mouse pancreatic acini, a maximally effective concentration of phorbol ester (1 microM) produced a secretory response that was only 28% of that produced by a maximally effective concentration of carbamoylcholine, whereas the ionophore (0.3 microM) stimulated amylase release to two-thirds of the maximal response to carbamoylcholine. In contrast, in guinea-pig acini, the phorbol ester and carbamoylcholine evoked similar maximal secretory responses, whereas the maximal secretory response to the ionophore was only 35% of that to carbamoylcholine. Combination of phorbol ester and ionophore resulted in a modest synergistic effect on amylase release in both species. It is concluded that cholinergic agonists act via both diacylglycerol and Ca2+ to regulate pancreatic protein phosphorylation, but that synergism between these intracellular messengers is of limited importance in stimulating enzyme secretion.  相似文献   

8.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

9.
The effects of the phosphatase inhibitors calyculin A and okadaic acid on amylase release from streptolysin-O permeabilized rat pancreatic acini were investigated. Both agents induced similar biphasic effects with moderate potentiation of calcium-stimulated amylase release at medium and strong inhibition at higher concentrations. Calyculin A was thirty times more potent than okadaic acid and at 100 nM totally inhibited calcium-induced amylase release while 3 microM okadaic acid reduced amylase release by 78%. 100nM calyculin A also completely inhibited GTP gamma S-potentiated amylase release and partially inhibited phorbol ester potentiated secretion. The data indicate that inhibition of a serine/threonine phosphatase, probably a type 1 phosphatase, leads to inhibition of calcium-induced amylase release in permeabilized pancreatic acini.  相似文献   

10.
The secretion of amylase, trypsinogen, chymotrypsinogen and proelastase from isolated rat dispersed pancreatic acini was investigated in the absence (basal) and presence of two concentrations of CCK8 (50 and 500 pM), carbachol (2.5 and 7.5 microM) and secretin (10 nM and 1 microM). The unstimulated (basal) rate of release of each of the digestive enzymes was essentially the same. However, whereas both doses of CCK8 and carbachol caused a preferential release of chymotrypsinogen over that of amylase and trypsinogen, the magnitude of stimulated release of amylase, trypsinogen and chymotrypsinogen by 1 microM secretin was found to be similar for each of the enzymes. Furthermore, none of the secretagogues caused a significant enhancement in proelastase release. The present data demonstrate that whereas CCK8 and carbachol induce a greater release of chymotrypsinogen over that of amylase or trypsinogen, release of all three enzymes was equally stimulated by secretin from isolated pancreatic acini.  相似文献   

11.
Increased lung uptake of liposomes coated with polysaccharides   总被引:3,自引:0,他引:3  
The effect of amiloride on fluid and protein secretion in the isolated rabbit pancreas and on amylase secretion in rabbit pancreatic acini has been studied. Amiloride (1 mM) has no effect on the pancreatic fluid secretion either in a normal incubation medium (143 mM Na+), or in a medium containing only 25 mM Na+. The carbachol-induced enzyme secretion is inhibited by amiloride in both systems, whereas the enzyme secretion induced by the C-terminal octapeptide of cholecystokinin ( PzO ) is not affected. Amiloride also inhibits the carbachol-induced 45Ca efflux from rabbit pancreatic acini, but again not that induced by PzO . The amiloride concentrations for half-maximal inhibition of carbachol-induced amylase secretion and 45Ca efflux are 40 and 80 microM, respectively. Amiloride also competitively inhibits the specific binding of [3H]quinuclidinyl benzylate ( [3H]QNB) to rabbit pancreatic acini, suggesting that the amiloride effect is due to competition on the level of the muscarinic acetylcholine receptor.  相似文献   

12.
In the present study, the effect of TRH on amylase secretion was determined both in vivo, by cannulating the pancreatic duct of rats, as well as in vitro, by using isolated lobules and dissociated acini. The results show that TRH inhibited both basal and stimulated in vivo amylase secretion. Nevertheless, the in vitro experiments failed to show a TRH-related inhibitory effect when TRH was used alone, although the hormone did blunt the secretion elicited by CCK8 and bethanechol from isolated lobules and dissociated acini. Results suggest that TRH can inhibit stimulated amylase secretion in rats through a direct effect on acinar cells.  相似文献   

13.
In dispersed acini from guinea pig pancreas, replacing extracellular sodium by tetraethylammonium (1) abolished carbamylcholine-stimulated amylase secretion but did not alter the increase in amylase secretion caused by the C-terminal octapeptide of cholecystokinin, bombesin, ionophore A23187, vasoactive intestinal peptide or 8-bromoadenosine 3':5' monophosphate, (2) caused a parallel rightward shift in the dose-response curve for carbamylcholine-stimulated amylase secretion and (3) inhibited binding of N-[3H]methyl scopolamine to muscarinic cholinergic receptors. Detectable inhibition of carbamylcholine-stimulated amylase secretion and binding of N-[3H]methyl scopolamine occurred with 300 microM tetraethylammonium, and half-maximal inhibition of these functions occurred with 1-2 mM tetraethylammonium. Replacing extracellular sodium by Tris did not alter the stimulation of enzyme secretion caused by any secretagogue tested. These results indicate that the tetraethylammonium is a muscarinic cholinergic receptor antagonist and that enzyme secretion from pancreatic acini does not depend on extracellular sodium.  相似文献   

14.
To determine the role of free cytosolic calcium ([Ca+2]i) in stimulated enzyme secretion from exocrine pancreas, we determined the effects of various pancreatic secretagogues on [Ca+2]i and amylase release in dispersed acini from the guinea pig pancreas. Cholecystokinin-octapeptide (CCK-OP), carbachol, and bombesin, but not vasoactive intestinal peptide, stimulated rapid increases in [Ca+2]i from 100 to 600-800 nM that were independent of extracellular calcium. The increases in [Ca+2]i were transient (lasting less than 5 min) and correlated with an initial rapid phase of amylase release. After 5 min, secretagogue-stimulated amylase release occurred at basal [Ca+2]i. Carbachol pretreatment of the acini abolished the effects of CCK-OP and bombesin on [Ca+2]i and the initial rapid phase of amylase release. 4 beta-phorbol 12-myristate 13-acetate (PMA) had no effect on [Ca+2]i but stimulated an increase in amylase release. The addition of CCK-OP or A23187 to PMA-stimulated acini caused an increase in [Ca+2]i and PMA-stimulated amylase release only during the first 5 min after addition of these agents. These results indicate that CCK-OP, carbachol, and bombesin release calcium from an intracellular pool, resulting in a transient increase in [Ca+2]i and that this increase in [Ca+2]i mediates enzyme secretion during the first few minutes of incubation. The results with PMA suggest that secretagogue-stimulated secretion not mediated by increased [Ca+2]i (sustained secretion) is mediated by 1,2-diacylglycerol.  相似文献   

15.
Both protein kinase C and Ca2+ may act in concert to bring about activation of secretion. This study examined the actions on pancreatic acini of ionomycin and phorbol dibutyrate, which selectively stimulate one or the other of these pathways; their stimulatory effects were compared with those of receptor agonists, such as carbachol and caerulein, which activate phospholipase C. The Ca2+ ionophore ionomycin produced a dose-dependent increase in amylase secretion and intracellular free Ca2+ (as measured by quin-2). The increase in amylase secretion elicited by carbachol or caerulein was accompanied by a small sustained increase in intracellular free Ca2+, following an initial peak. However, the elevation in intracellular free Ca2+ produced by these receptor agonists for a given level of amylase secretion was less than that observed with ionomycin. Phorbol dibutyrate stimulated amylase secretion by a mechanism that was independent of extracellular Ca2+, and no change in intracellular free Ca2+ was observed. Synergistic stimulatory effects of phorbol dibutyrate and ionomycin were observed, whether the phorbol ester was present before, or in combination with, ionomycin. Diacylglycerols containing unsaturated fatty acids (1,2-dioleoylglycerol and 1,3-dioleoylglycerol) also stimulated amylase secretion and exhibited synergistic effects on secretion with ionomycin. These findings suggest that complete activation of amylase secretion from the pancreas requires stimulation of both Ca2+-dependent and protein kinase C-activated pathways.  相似文献   

16.
To assess direct evidence of adrenergic stimulation in pancreatic amylase secretion, effects of catecholamines on amylase release and intracellular cyclic AMP accumulation were examined with rat dispersed pancreatic acini. We first carried out control studies with CCK-8 and carbamylcholine to evaluate the usefulness of the material for the examination of amylase secretion, and examined VIP-induced cyclic AMP accumulation to assess the agonist evoked intracellular response. As a result, significant effects of CCK-8, carbamylcholine and VIP were observed, which confirmed that dispersed pancreatic acini used in this study were useful in examining exocrine pancreatic secretion. However, catecholamines failed to stimulate amylase release from pancreatic acini, although a significant increase in intracellular cyclic AMP accumulation was observed. Thus the present study strongly suggests that direct involvement of catecholamine is unlikely in pancreatic amylase secretion, in contrast to results reported previously.  相似文献   

17.
1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion   总被引:5,自引:0,他引:5  
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.  相似文献   

18.
The Ca2+ chelators, EGTA and BAPTA, have been introduced into intact, isolated rat pancreatic acini using a hypotonic swelling method. This resulted in complete inhibition of amylase release, stimulated by carbamylcholine at a submaximal concentration and 82 - 85% inhibition at maximal concentrations. Acini swollen in the absence of Ca2+ chelators showed similar secretory responses to those of unswollen acini. Treatment of unswollen acini with chelators inhibited the maximum response to carbamylcholine by only 23%. The inhibitory effect of intracellular chelators was not due to ATP depletion or a lowering of the total cell Ca2+ content. Thus, these results provide the first direct demonstration that an increase in intracellular Ca2+ concentration is necessary for the stimulation of enzyme release from pancreatic acinar cells.  相似文献   

19.
Recent synthesis of specific, potent bombesin receptor antagonists allows examination of the role of bombesin-like peptides in physiological processes in vivo. We characterized effects of [D-Phe6]bombesin(6-13)-methyl-ester (BME) on pancreatic enzyme secretion stimulated by the C-terminal decapeptide of gastrin releasing peptide (GRP-10), food intake, and diversion of bile-pancreatic juice in rats. In isolated pancreatic acini, BME had no agonistic effects on amylase secretion but competitively inhibited responses to GRP-10, yielding a pA2 value of 8.89 +/- 0.19. In conscious rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas, basal enzyme secretion (bile-pancreatic juice recirculated) was not affected by the antagonist. Maximal amylase response to GRP-10 (0.5 nmol/kg/h) was inhibited dose dependently by BME, reaching 97% inhibition at a dose of 400 nmol/kg/h. The dose response curve of amylase secretion stimulated by GRP-10 was shifted to the right by 40 nmol/kg/h BME, but maximal amylase response was unaltered, suggesting competitive inhibition in vivo. Liquid food intake and bile-pancreatic juice diversion caused substantial increases in amylase secretion; neither response was altered during administration of 400 pmol/kg/h BME. These results demonstrate that BME is a potent, competitive antagonist of pancreatic responses to bombesin-like peptides in vitro and in vivo. Lack of effect of BME on basal pancreatic secretion or responses to liquid food intake or diversion of bile-pancreatic juice in rats suggests that endogenous bombesin-like peptides do not act either directly or indirectly to mediate these responses.  相似文献   

20.
Dispersed mouse and guinea-pig pancreatic acini were used to examine the effects of the inositol analogue, γ-hexachlorocyclohexane (lindane) on agonist-stimulated amylase secretion. Secretion from mouse acini in response to carbachol and cholecystokinin octapeptide (CCK-8) was reduced by lindane. Similarly, amylase release from guinea-pig acini stimulated by carbachol was abolished by lindane. These acini, however, still remained responsive to dibutyryl-cAMP with only a slightly diminished secretion to this agent. Inositol phospholipid synthesis and hydrolysis was stimulated in mouse acini by both carbachol and CCK-8. Although hydrolysis of these lipids in response to CCK-8 was reduced by only 18%, stimulation of inositol phospholipid synthesis by either agonist was abolished by lindane. Dose-response curves for inositol phospholipid synthesis stimulated by carbachol and CCK-8 in mouse acini were biphasic and superimposable with those of amylase secretion. In contrast, the dose-response curve for phosphoinositide hydrolysis was sigmoid and clearly separable from that of synthesis. Reducing the external Ca2+ concentration caused the dose-response curves for carbachol- and CCK-8-induced inositol phospholipid synthesis to be displaced to the right, as has been observed for amylase secretion. A23187 was also found to induce amylase secretion and inositol phospholipid synthesis, and both of these responses were inhibited by lindane. Amylase secretion and inositol phospholipid synthesis may, therefore, be closely related events in the exocrine pancreas. Lindane may provide a valuable tool with which to determine the role of inositol phospholipid metabolism in stimulus-response coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号