首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitospores or cysts of Allomyces macrogynus do not take up the glucose analogue 2-deoxyglucose. Uptake of 2-deoxyglucose by germlings begins at 25 min into germination, the start of the rhizoid stage, and increases in rate by approximately 50-fold until 100 min into germination. The rate remains constant from 100 to 200 min, at which time germination is completed and hyphal formation begins. The presence of glucose in the germination medium blocks the uptake of 2-deoxyglucose. Of the other sugars tested, only galactose had any effect on 2-deoxyglucose uptake. Actinomycin D treatment during germination in a glucose-containing medium prevented the appearance of the uptake system, but actinomycin D was not effective after the transfer to a glucose-free medium. Cycloheximide treatment prevented the appearance of the uptake system if it was added at the time of the transfer to the glucose-free medium; it inhibited uptake only partially if the germlings were starved of glucose before its addition. It appears, therefore, that both ribonucleic acid synthesis during germination and protein synthesis after the removal of glucose are required for the uptake of 2-deoxyglucose.  相似文献   

2.
Azotobacter vinelandii cysts undergo conversion to vegetative cells in Burk's nitrogen-free medium utilizing glucose, sucrose, or acetate. In 1% glucose, this overall process was complete in 8 hr and consisted of a germination and an outgrowth phase. Respiration, ribonucleic acid, and protein synthesis began soon after the addition of the germinant, and these processes proceeded at rates characteristic of the germination. The rates of respiration and synthesis increased sharply between 4 and 5 hr, the beginning of the outgrowth, at which time deoxyribonucleic acid synthesis and nitrogen fixation began. Respiration, macromolecular synthesis and nitrogen fixation continued at high rates until the emergence of vegetative cells from the cyst coats.  相似文献   

3.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

4.
Rhizobium trifolii 0403 maintained in exponential phase via periodic dilution doubled in 210 min in mannitol-salts medium and doubled in 244 min in glycerolsalts. In both media, cell number and optical density increased in parallel. When exponentially growing cells in either medium were supplemented with a mixture of glucose, Casamino Acids, succinate, and yeast extract, optical density continued to increase but within less than the time required for one doubling, division ceased. The increase in optical density coupled with division cessation resulted in the formation of large, pleomorphic, nondividing cells. Large cells apparently increased in size as a result of swelling only at regions of most recent cell envelope synthesis. Greater than 95% of the cells in a population swelled, and commitment to swelling occurred within two doubling time equivalents. Swollen cells eventually reached a characteristic maximum size and exhibited osmotic fragility.  相似文献   

5.
The effect of glucose and dissolved oxygen in a synthetic medium simulating the standard composition of grape juice on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiae strain during alcoholic fermentation was studied. The specific in vitro activity of alcohol acetyltransferase (AATase, EC 2.3.1.84) and esterases (ESase, EC 3.1.1.1; hydrolysis and synthesis of esters) in cell-free extracts was also examined. The specific activity of AATase for ethyl acetate was found to peak at the beginning of the exponential growth phase and that for isoamyl acetate at its end. While the glucose concentration only affected the maximum specific activity of AATase, and only slightly, oxygen inhibited such activity, to a greater extent for isoamyl acetate than for ethyl acetate. On the other hand, esterases were found to catalyse the synthesis of ethyl acetate only at a low or medium glucose concentration (50 or 100 g l-1, respectively), and to reach their maximum hydrolytic activity on isoamyl acetate during the stationary growth phase. The highest ethyl acetate and isoamyl acetate concentrations in the medium were obtained with a glucose concentration of 250 g l-1 and semianaerobic conditions.  相似文献   

6.
The effects of temperature on the activation, glucose-induced germination, and outgrowth of Bacillus megaterium QM B1551 spores were investigated. There was no evidence for discontinuities in the response of spores to temperature in these processes reflecting reported thermal anomalies in the physical structure of water. Increasing the temperature of heat activation (aqueous suspensions, 5 min) increased the germinability of spores. Activation, as measured by extent of germination, was optimal after heating at 62 to 78 C, and the rate of spore germination was maximal after heat activation at 64 to 68 C. Increasing the temperature of activation above 68 C depressed the germination rate and increased the time lag before this rate was reached. Germination occurred over a wide range of temperatures, but was optimal between 28 and 38 C. The highest rate of germination was at 38 C; at lower incubation temperatures, the maximum attained rate was lower and the lag in attaining this rate was extended. Outgrowth (postgerminative development through the first cell division) of the germinated spores in Brain Heart Infusion (BHI) occurred in at least two phases-a temperature-dependent lag phase followed by a relatively temperature-independent phase of maximum outgrowth rate, during which increase in optical density was a linear function of time. Outgrowth time (time required for doubling of the initial optical density), essentially dependent on the time for completion of the lag phase, was shortest at temperatures between 34 and 40 C. The temperature-dependent lag phase was completed in a rich medium (e.g., BHI) but not in the glucose germination medium, suggesting that the endogenous reserves of the germinated spore were inadequate to support the metabolic synthetic events occurring during this period.  相似文献   

7.
Cells of the Neurospora crassa slime mutant grown in sucrose medium exhibited low activities of glyoxysomal marker enzymes isocitrate lyase (ICL), malate synthetase (MS), and malate dehydrogenase. Transfer of the cells to a medium containing acetate as sole carbon source ("acetate medium") induced a strong increase in the activities of these enzymes in both the soluble and the crude particulate cell fraction. Soluble isocitrate lyase activity increased rapidly after a lag phase of about 45 minutes. Addition of 0.1 mM cycloheximide to the acetate medium 3 hours after transfer of the cells halted the rise of isocitrate lyase activity in either cell fraction, but the inhibition of the incorporation of ICL activity into the particulate cell fraction was delayed by 1 hour. Addition of 20 g/l glucose resulted in the immediate decrease of both soluble and particulate ICL activities. Transfer to acetate medium induced no change in the activities of other microbody marker enzymes such as catalase, uricase or D-amino acid oxidase. Resolution of crude homogenates of "slime" cells by sucrose density gradient centrifugation yielded two major protein bands: A mitochondrial band at a density of 1.180 kg/l showing maximum activites of fumarase, isocitrate dehydrogenase and cytochrome c oxidase, and a microbody-rich band which obviously consisted of two types of organelles with different biochemical properties. Maximum activities of ICL and MS sedimented at a density of 1.21 kg/l while the peaks of particulate uricase and catalase activities were recovered at 1.24 kg/l.  相似文献   

8.
The coupling of membrane-bound glucose dehydrogenase (EC 1.1.99.17) to the respiratory chain has been studied in whole cells, cell-free extracts, and membrane vesicles of gram-negative bacteria. Several Escherichia coli strains synthesized glucose dehydrogenase apoenzyme which could be activated by the prosthetic group pyrrolo-quinoline quinone. The synthesis of the glucose dehydrogenase apoenzyme was independent of the presence of glucose in the growth medium. Membrane vesicles of E. coli, grown on glucose or succinate, oxidized glucose to gluconate in the presence of pyrrolo-quinoline quinone. This oxidation led to the generation of a proton motive force which supplied the driving force for uptake of lactose, alanine, and glutamate. Reconstitution of glucose dehydrogenase with limiting amounts of pyrrolo-quinoline quinone allowed manipulation of the rate of electron transfer in membrane vesicles and whole cells. At saturating levels of pyrrolo-quinoline quinone, glucose was the most effective electron donor in E. coli, and glucose oxidation supported secondary transport at even higher rates than oxidation of reduced phenazine methosulfate. Apoenzyme of pyrrolo-quinoline quinone-dependent glucose dehydrogenases with similar properties as the E. coli enzyme were found in Acinetobacter calcoaceticus (var. lwoffi) grown aerobically on acetate and in Pseudomonas aeruginosa grown anaerobically on glucose and nitrate.  相似文献   

9.
10.
Macroconidia ofMicrosporum canis, when placed in a nutrient medium produce germ tubes within 4–6 h. Precursor incorporation studies showed that protein synthesis occurred prior to RNA synthesis. Sucrose density gradient analysis of wet and dry spore extracts revealed the presence of 16 % and 11 % polysomes respectively. The polysomal content increased to about 50% within 15 min of germination. Synthesis of RNA occurred only after 2 h of germination. Pool equilibration of the radioactive precursors was not limiting to these measurements. Polyadenylated RNA was isolated from macroconidia and was found to comprise 2–2.5 % of the total RNA. The poly(A)+ RNAs were heterodisperse and translatable in a wheat germ cell free translating system. It was concluded that macroconidia ofMicrosporum canis contain pre-formed mRNA which is translated early in germination  相似文献   

11.
Acetyl-CoA carboxylase activity was measured in digitonin-permeabilized rat hepatocytes by coupling the carboxylase reaction to the fatty acid synthase reaction. Using this assay the activity of acetyl-CoA carboxylase was covariant with the rate of fatty acid synthesis. Insulin and the tumor promotor phorbol myristate acetate were found to stimulate, and glucagon and noradrenaline to inhibit both cellular parameters. The stimulation of acetyl-CoA carboxylase by insulin developed slowly (15 to 30 min) whereas the phorbol myristate acetate effect developed faster (within 15 min). The inhibition of the enzyme caused by glucagon was already apparent within 1 min after hormone addition. Inhibition by noradrenaline, in the presence of propranolol, was also quite rapid and occurred within 2 min after addition of the agonist.  相似文献   

12.
Two glucosamine (GCA)-requiring mutants have been isolated which grow on glucose minimal or nutrient sporulation medium only in the presence of either GCA or acetyl-GCA. They lack the l-glutamine-d-fructose-6-phosphate aminotransferase (EC 2.6.1.13), which is repressible by GCA and whose activity in the standard strain decreases after cessation of growth. But the mutants can grow on GCA as sole carbon and ammonia source, because GCA induces the synthesis of 2-amino-2-deoxy-d-glucose-6-phosphate ketol-isomerase (deaminating) (EC 5.3.1.10). With respect to sporulation, the GCA-requiring mutants are in a serious dilemma, as GCA represses the onset of massive sporulation and yet a small amount of GCA-6-phosphate derivatives is necessary to allow sporulation. When GCA is continuously provided in small quantities, sporelike particles are produced which contain little or no spore cortex but a normal spore coat. Apparently, GCA derivatives are needed especially for cortex formation. Many of the sporelike particles can produce colonies after octanol, but not after heat treatment. When they are purified by treatment with lysozyme and sodium dodecylsulfate, they do not show the decrease in optical density at 600 nm typical of germination nor do they produce offspring.  相似文献   

13.
Two "ACE" mutants of Bacillus subtilis which require acetate for growth on glucose minimal medium have been isolated. They do not grow with acetoin, 2,3-butanediol, fatty acids, isoleucine, lipoic acid, malic acid, pyruvic acid, succinic acid, thiamine, or valine, but respond somewhat to glutamate or citrate. The mutants lack the activity of the pyruvate dehydrogenase complex; they excrete pyruvate and later acetoin. They grow in nutrient sporulation medium (NSMP) to one-half the normal turbidity and do not sporulate subsequently. When acetate is added to NSMP (at the optimal concentration of 0.07 m), the ACE mutants grow to the normal turbidity and then sporulate normally. Growth but not sporulation is restored in NSMP upon addition of 2,3-butanediol, citrate, glucose, glutamate, glycerol, or ribose, but not upon addition of acetoin, malate, oxaloacetate, pyruvate, and several other compounds. After growth in NSMP has stopped, the mutants incorporate uracil only at a very low rate, which can be increased by the addition of acetate, citrate, or glutamate. Furthermore, the metabolism of acetoin is prevented after growth has stopped but can be restored by the addition of acetate. All these results can be explained by a lack of reduced nicotinamide adenine dinucleotide (NADH) resulting from the deficiency in acetylcoenzyme A. In fact, after growth of the ACE mutants had stopped, the NADH concentration was at the borderline of measurability, whereas it increased significantly upon addition of glucose. The growing standard strain contains, at the same bacterial turbidity, at least 20 times more NADH (230 pmole/optical density unit at 600 nm) than the nongrowing ACE mutants. The isolated spores, obtained after growth in NSMP plus acetate, can be initiated to germinate in the presence of either l-alanine or the combination of l-asparagine, fructose, glucose, and potassium; addition of acetate is not required and has no effect.  相似文献   

14.
The synthesis of levansucrase is derepressed during the growth of Gluconobacter oxydans L-1 in media with mannitol, sorbitol or fructose. The level of levansucrase activity under these conditions is 20-30 times higher than in cultures growing in the presence of xylite, galactose or glucose. Addition of mannitol or sucrose to the culture grown in a medium with xylite increases the differential rate of levansucrase synthesis. Addition of glucose at a concentration of 1% to the culture growing in a medium with mannitol at constant pH represses the synthesis of levansucrase only for a short period of time (15-20 min). The mechanism regulating the activity of levansucrase in the bacterial culture is susceptible to changes in the pH of the medium: the differential rate of levansucrase synthesis is three-fold higher when the culture is grown at pH 5.7 cf. pH 4.7.  相似文献   

15.
The transfer of Morris hepatoma cells induced by the hormone within 10-60 min in to a hormone-free medium is associated with the augmentation of tyrosine aminotransferase synthesis. The kinetics of this process does not differ from that of the hormone-induced enzyme. The return of tyrosine aminotransferase synthesis to the basal level occurs 15-20 hours after the hormone withdrawal from the medium, although the concentration of the intranuclear hormone sharply decreases already after 3 hours. It was demonstrated that the presence in the hepatoma cell nuclei of 20-25% of the initially bound hormone for at least 20 hours after the cell transfer to the hormone-free medium is not sufficient for maintaining a high level of tyrosine aminotransferase gene expression. Using two-dimensional electrophoresis of 3H-labeled hepatoma cell proteins, it was demonstrated that the observed high activity of tyrosine aminotransferase is due to the de novo synthesis of enzyme molecules rather than to the existence of preformed long-living tyrosine aminotransferase molecules inside the cell. Study of [14C]uridine incorporation into non-ribosomal nuclear RNA of hepatoma cells showed a long-term presence of the label in the RNA throughout the chase experiment. It was assumed that the high activity of the enzyme for 10-15 hours after the hormone release from the hepatoma cell nuclei is due to the accumulation in the nuclei of long-living pre-mRNA molecules synthesized after the hormone addition to the cells and during the first hours after the cell transfer to the hormone-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Spores of Streptomyces viridochromogenes were removed from the surface of solid media with glass beads and suspended in a buffer-detergent solution. Addition of yeast extract and glucose resulted in rapid loss of refractility of the spores. Appearance of germ tubes followed. Germination was accompanied by a decrease in the optical density (OD) of the suspension. The OD decrease was used as an assay for germination. A defined germination medium (DGM) comprised of L-alanine, L-glutamic acid, adenosine, para-aminobenzoic acid, and calcium and magnesium ions provided a germination rate nearly equal to that of complex media. The germination rate was essentially the same if D-alanine and D-glutamate replaced the L-isomers. The optimum pH and temperature for germination were 7.0 and 35 C. Germination was absolutely dependent on the presence of CO2. Spores harvested after growth for longer periods than the usual time (10 days) became less germinable in DGM. The same was observed for spores grown at 37 C as compared with 30 C. Spores incubated in DGM for various time periods before being transferred to a buffer solution did not continue to germinate. Spores harvested after growth of eight species of Streptomyces did not show a decrease in OD when incubated in yeast extract medium. Another strain of S. viridochromogenes did exhibit an OD decrease in the medium. Comparative properties of spores of streptomycetes, fungi, and bacilli are discussed.  相似文献   

17.
The metabolism of Cephalosporium acremonium grown in a complex medium supplemented with DL-methionine or inorganic sulfate was studied. More growth occurred in a sulfate medium than in a methionine medium. Methionine-grown cells had an increased rate of respiration, a higher rate of catabolism with acetate and glucose as substrate, and higher specific activities of certain respiratory enzymes than sulfate-grown cells. Labeled acetate and glucose were assimilated at a faster rate by methionine-grown cells than sulfate-grown cells. Taurine, cystathionine, and small quantities of four acidic compounds were present in the amino acid pool of methionine-grown cells, but they were not detected in the pool of sulfate-grown cells. The differences in metabolic activity of sulfate and methionine-grown cells are discussed in regard to cephalosporin C synthesis.  相似文献   

18.
Two respiration-deficient mutants (rd) were isolated from the acetate-nonutilizing mutants (acu) induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) inAspergillus ochraceus. A complementation analysis of the tword mutants indicated that MNNG had caused a mutation at a single locus. The diameter of the tword mutant colonies in glucose medium was found to be small in comparison to that of the wild type and the otheracu mutants; the diameter of the isolated mutant colonies in acetate medium was very small. The grown zone ofrd mutants remained colorless up to 20 h incubation in 2,3,5-triphenyltetrazolium-overlaid solid Czapek-Dox medium and it turned pink after prolonged incubation, whereas the wild type and the otheracu mutants became pink within 30 min in the same medium. Therd mutants were further characterized by measuring the respiratory activities of intact mycelia in the presence of glucose.  相似文献   

19.
Gluconeogenesis in Citrullus lanatus seeds is a post germinative event. Increases in isocitrate lyase activity and incorporation of radioactivity from [2-14C]acetate into sugars occur only after radicle emergence. During germination, the seeds appear to rely on carbohydrate as the respiratory substrate. At this time, glycolysis, the pentose phosphate pathway, and the tricarbocyclic acid cycle seem to be functional. Utilization of raffinose during germination appears to be important.

Water stress, which completely inhibits germination, has a marked effect on carbohydrate metabolism. The rate of 14CO2 release from [2-14C]acetate, [1-14C]glucose, and [6-14C]glucose is lower in the stressed seeds than the control seeds during the respiratory lag phase. However, in the stressed seeds neither glycolysis, the pentose phosphate pathway, nor the tricarboxylic acid cycle is completely inhibited. In contrast to the control seeds in which raffinose content sharply declines after 12 h of incubation, raffinose content in the stressed seeds remains fairly constant.

The respiratory lag phase of the control seeds coincides with a lower reducing substance content, glucose content, and fructose content than in the stressed seeds during the corresponding incubation period.

  相似文献   

20.
A simple method of assaying germination of bdellocysts in liquid medium has been devised. Bdellocysts can be induced to germinate by any of eight L-amino acids or the monovalent cations K+ and NH4+. L-Glutamine was the best individual inducer of germination, although the resulting rate of germination was much slower than in a complex medium. The use of a defined germination medium containing L-glutamine, KCl, and NH4Cl produced a faster rate of germination than did complex media. Bdellocysts germinated most rapidly at pH 8.0 and at 35 degrees C and required aerobic conditions. Respiration of bdellocysts began to increase at 3 min after the addition of germinants. Germination was inhibited by respiratory-chain inhibitors and by inhibitors of macromolecular synthesis. When bdellocysts were heat shocked at sublethal temperatures for short periods, there was no effect on the rate of germination in the defined germination medium or in the complex medium. However, heat-shocked bdellocysts germinated at a much faster rate in the presence of single inducers of germination when compared to nonshocked bdellocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号