首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Compared with its rodent orthologs, little is known about the chemical specificity of human constitutive androstane receptor (hCAR) and its regulation of hepatic enzyme expression. Phenytoin (PHY), a widely used antiepileptic drug, is a potent inducer of CYP2B6 in primary human hepatocytes, but does not activate human pregnane X receptor (PXR) significantly in cell-based transfection assays at the same concentrations associated with potent induction of CYP2B6. Based on this observation, we hypothesized that PHY may be a selective activator of hCAR. In primary human hepatocytes, expression of CYP2B6 reporter genes containing phenobarbital-responsive enhancer module (PBREM) or PBREM/xenobiotic-responsive enhancer module (XREM) response elements were activated up to 14- and 28-fold, respectively, by 50 microm PHY. By contrast, parallel experiments in HepG2 cell lines co-transfected with an hPXR expression vector did not show increased reporter activity. These results indicated that a PXR-independent pathway, which is retained in primary hepatocytes, is responsible for PHY induction of CYP2B6. Further experiments revealed that PHY effectively translocates hCAR from the cytoplasm into the nucleus in both primary human hepatocytes and CAR(-/-) mice. Compared with vehicle controls, PHY administration significantly increased CYP2B6 reporter gene expression, when this reporter construct was delivered together with hCAR expression vector into CAR(-/-) mice. However, PHY did not increase reporter gene expression in CAR(-/-) mice in the absence of hCAR vector, implying that CAR is essential for mediating PHY induction of CYP2B6 gene expression. Taken together, these observations demonstrate that, in contrast to most of the known CYP2B6 inducers, PHY is a selective activator of CAR in humans.  相似文献   

4.
5.
6.
7.
The orphan nuclear constitutive androstane receptor (CAR) is proposed to play a central role in the response to xenochemical stress. Identification of CAR target genes in humans has been limited by the lack of a selective CAR agonist. We report the identification of 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO) as a novel human CAR agonist with the following characteristics: (a) potent activity in an in vitro fluorescence-based CAR activation assay; (b) selectivity for CAR over other nuclear receptors, including the xenobiotic pregnane X receptor (PXR); (c) the ability to induce human CAR nuclear translocation; and (d) the ability to induce the prototypical CAR target gene CYP2B6 in primary human hepatocytes. Using primary cultures of human hepatocytes, the effects of CITCO on gene expression were compared with those of the PXR ligand rifampicin. The relative expression of a number of genes encoding proteins involved in various aspects of steroid and xenobiotic metabolism was analyzed. Notably, CAR and PXR activators differentially regulated the expression of several genes, demonstrating that these two nuclear receptors subserve overlapping but distinct biological functions in human hepatocytes.  相似文献   

8.
9.
Troglitazone was withdrawn from the market shortly after approval for diabetes type II therapy because of strong hepatotoxic effects in man that could not be predicted from regulatory animal or in vitro studies. Another pharmaceutical that is regularly associated with adverse effects on the liver, sometimes leading to acute liver failure, is the widely used non-steroidal anti-inflammatory drug (NSAID) diclofenac. Since the underlying molecular mechanisms are not yet fully known, we treated primary rat and human hepatocyte monolayer cultures for 24 h with different doses of troglitazone and diclofenac to analyze species differences related to toxicity in vitro. Metformin an antidiabetic drug which does not cause severe adverse reactions served as negative control. Human hepatocytes showed a higher sensitivity to troglitazone than rat hepatocytes, while diclofenac-induced cytotoxicity at fairly similar concentrations. By co-treatment with specific inhibitors for cytochrome P450 (CYP) 2C and CYP3A - the major phase I enzymes involved in liver xenobiotic metabolism - we could confirm the prominent role of CYP3A in the bioactivation of troglitazone as well as the role of CYP3A and CYP2C in the activation of diclofenac. Inhibition of these enzymes increased the viability of treated cells in both species. Furthermore, we were able to demonstrate marked species differences in gene expression patterns of troglitazone treated rat and human hepatocytes. In contrast to rat hepatocytes, human cells showed distinct upregulation of various CYPs, regulators of xenobiotic metabolism and marker genes for oxidative stress. In contrast, gene expression alterations in rat and human hepatocytes treated with Diclofenac were rather similar. Altogether our study showed that species-specific effects as well as indications for the mode of action of compounds can be addressed by the use of primary hepatocyte cultures from various species in combination with gene expression profiling.  相似文献   

10.
While fresh human hepatocyte cultures are widely used to model hepatic cytochrome P450 (CYP) regulation and activity, their CYP1A subfamily composition induced by, e.g., polycyclic aromatic hydrocarbons is ambiguous. CYP1A1, CYP1A2, or both have been reported to be expressed, and their varied roles in chemical carcinogenesis makes resolution of which CYPs are expressed essential. We have used an immunoblot system with Bis-Tris-HCl-buffered polyacrylamide gel, which clearly resolves human CYP1A1 and CYP1A2, and polyclonal goat anti-human CYP1A1/CYP1A2 and rabbit anti-human CYP1A2 antibodies to probe the expressed CYP1A1 and CYP1A2 composition of seven individual human hepatocyte cultures induced with 5 microM benzo[k]fluoranthene (BKF) for 24 h. In six of the cultures only CYP1A1 was detected, and in the seventh both CYPs were detected. In most vehicle-treated hepatocyte cultures, neither CYP1A1 nor CYP1A2 was detected. In three additional hepatocyte cultures treated individually with BKF and 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD), the resultant induced CYP1A1/1A2 profiles were essentially not influenced by the nature of the inducing agents. To develop an activity-based assay to differentiate between CYP1A1 and CYP1A2 expression in human hepatocytes, our previously published R warfarin assay (Drug Metab. Disp. (1995) 23, 1339-1345) was applied to TCDD (10 nM)-treated hepatocyte culture. The low concentration of TCDD did not produce inhibition of the warfarin metabolism-such inhibition could confound the results. Based on the ratios of 6- to 8-hydroxywarfarin formed in two cultures, the ratios of CYP1A1/CYP1A2 expressed in these cultures were determined and they agreed with the ratios determined by immunoblot analysis. Thus each individual human hepatocyte culture must be characterized for induced CYP1A1 and CYP1A2 expression in studies of CYP1A activity. The warfarin assay provides a means of characterizing the cultures.  相似文献   

11.
The primary objective of this study was to evaluate the modulation of UGT1A1 expression in human hepatocytes using prototypical CYP450 inducers. A bank of 16 human livers was utilized to obtain an estimate of the range of UGT1A1 protein expression and catalytic activity. Concentration-dependent changes in UGT1A1 response were evaluated in hepatocyte cultures after treatment with 3-methylchloranthrene, beta-napthoflavone, rifampicin, or phenobarbital. Pharmacodynamic analyses of UGT1A1 expression were conducted and compared to those of CYP450 after treatment with inducers in 2-3 different hepatocyte preparations. Additionally, expression of UGT1A1 mRNA and protein was evaluated in human hepatocytes treated with 14 different compounds known to activate differentially the human pregnane-X-receptor or constitutive androstane receptor. Pharmacodynamic modeling revealed EC50 values statistically significant between UGT1A1 and CYP2B6 after treatment with PB, but not statistically distinguishable between UGT1A1 and CYP's 1A2 or 3A4 after treatment with 3-methylchloranthrene or rifampicin, respectively. UGT1A1 was most responsive to the pregnane-X-receptor-agonists rifampicin, ritonavir, and clotrimazole at the mRNA level and, to a lesser extent, the constitutive androstane receptor-activators, phenobarbital and phenytoin. Pharmacodynamic analyses support a mechanism of coordinate regulation between UGT1A1 and a number of CYP450 enzymes by multiple nuclear receptors.  相似文献   

12.
13.
14.
15.
16.
17.
The endogenous CYP2B6 gene becomes phenobarbital (PB) inducible in androstenol-treated HepG2 cells either transiently or stably transfected with a nuclear receptor CAR expression vector. The PB induction mediated by CAR is regulated by a conserved 51-base pair element called PB-responsive enhancer module (PBREM) that has now been located between -1733 and -1683 bp in the gene's 5'-flanking region. An in vitro translated CAR acting as a retinoid X receptor alpha heterodimer binds directly to the two nuclear receptor sites NR1 and NR2 within PBREM. In a stably transfected HepG2 cell line, both PBREM and NR1 are activated by PB and PB-type compounds such as chlorinated pesticides, polychlorinated biphenyls and chlorpromazine. In addition to PBREM, CAR also transactivates the steroid/rifampicin-response element of the human CYP3A4 gene in HepG2 cells. Thus, activation of the repressed nuclear receptor CAR appears to be a versatile mediator that regulates PB induction of the CYP2B and other genes.  相似文献   

18.
RNA interference (RNAi) has emerged as a powerful technique to downregulate gene expression. The use of polIII promoters to express small hairpin RNAs (shRNAs), combined with the versatility and robustness of lentiviral vector-mediated gene delivery to a wide range of cell types offers the possibility of long-term downregulation of specific target genes both in vitro and in vivo. The use of silencing lentivectors allows for a rapid and convenient way of establishing cell lines (or transgenic mice) that stably express shRNAs for analysis of phenotypes produced by knockdown of a gene product. Here we present two possible protocols describing the design and cloning of silencing lentiviral vectors. These protocols can be completed in less than 3 weeks.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号