首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viruses typically elicit potent adaptive immune responses, and live-virus-based vaccines are among the most efficient human vaccines known. The mechanisms by which viruses stimulate adaptive immune responses are not fully understood, but activation of innate immune signaling pathways in the early phase of the infection may be of importance. In addition to stimulating immune responses to viral antigens expressed in infected cells, viruses can also provide adjuvant signals to coimmunized protein antigens. Using recombinant Semliki Forest virus (rSFV)-based vaccines, we show that rSFV potently enhanced antibody responses against coimmunized protein antigens in the absence of other exogenously added adjuvants. Elicitation of antibody responses against both virus-encoded antigens and coimmunized protein antigens was independent of the signaling via Toll-like receptors (TLRs) previously implicated in antiviral responses. In contrast, the adjuvant effect of rSFV on coimmunized protein was completely abolished in mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor (IFN-AR1), demonstrating that IFN-alpha/beta signaling was critical for mediating this effect. Antibody responses directed against virus-encoded antigens were intact in IFN-AR1(-/-) mice, suggesting that other signals are sufficient to drive immune responses against virally encoded antigens. These data provide a basis for the adjuvant effect of rSFV and show that different signals are required to stimulate antibody responses to virally encoded antigens and to antigens administered as purified protein vaccines, together with viral particles.  相似文献   

2.
《Biotechnology advances》2017,35(3):375-389
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.  相似文献   

3.
An adjuvant is defined as a product that increases or modulates the immune response against an antigen (Ag). Based on this general definition many authors have postulated that the ideal adjuvant should increase the potency of the immune response, while being non-toxic and safe. Although dozens of different adjuvants have been shown to be effective in preclinical and clinical studies, only aluminium-based salts (Alum) and squalene-oil-water emulsion (MF59) have been approved for human use. However, for the development of therapeutic vaccines to treat cancer patients, the prerequisites for an ideal cancer adjuvant differ from conventional adjuvants for many reasons. First, the patients that will receive the vaccines are immuno-compromised because of, for example, impaired mechanisms of antigen presentation, non-responsiveness of activated T cells and enhanced inhibition of self-reactivity by regulatory T cells. Second, the tumour Ag are usually self-derived and are, therefore, poorly immunogenic. Third, tumours develop escape mechanisms to avoid the immune system, such as tumour editing, low or non-expression of MHC class I molecules or secretion of suppressive cytokines. Thus, adjuvants for cancer vaccines need to be more potent than for prophylactic vaccines and consequently may be more toxic and may even induce autoimmune reactions. In summary, the ideal cancer adjuvant should rescue and increase the immune response against tumours in immuno-compromised patients, with acceptable profiles of toxicity and safety. The present review discusses the role of cancer adjuvants at the different phases of the generation of antitumour immunity following vaccination.  相似文献   

4.
Adjuvants have been used for more than 70 yr to enhance the immune response of the host animal to an antigen. Among the mechanisms that adjuvants use to enhance the immune response are the "depot" effect, antigen presentation, antigen targeting, immune activation/modulation, and cytotoxic lymphocyte induction. The immunostimulatory properties of adjuvants result in inflammation, tissue destruction, and the potential for resulting pain and distress in the host animal. The inflammatory lesions produced by adjuvants such as Freund's complete adjuvant (FCA) have led some to conclude that pain and distress are present, even in cases where the scientific evidence fails to support this conclusion. Recommendations and regulations in the literature, based on available scientific evidence, provide guidance on total adjuvant volumes, volumes per site, routes of injection, booster injections, and adjuvants used for antibody production. Among the numerous adjuvants that are used for experimental antibody production reviewed in this article, many claim to be less inflammatory, tissue destructive, and painful than FCA while producing equal or superior antibody responses. Although no adjuvant surpasses FCA for experimental antibody production against a wide range of antigenic molecules, many produce excellent antibody responses with less inflammation and tissue destruction. Balancing the requisite degree of immuno-stimulation and the extent of inflammation, necrosis, and potential pain and distress requires consideration of the nature of the antigen, the host immune responsiveness, the adjuvant's mechanisms of action, and the desired end-product. In cases where the antigen is a weak immunogen or has a very limited availability, the type and role of adjuvant becomes a critical component in producing an acceptable immune response and humoral antibody response.  相似文献   

5.
Vaccine adjuvants stimulate the innate immune system and determine the outcome of the immune response induced. A better understanding of their action is therefore crucial to the development of new and safer vaccines. Monophosphoryl lipid A (MPL), a 'detoxified' version of lipolysaccharide, is a promising new adjuvant component in human vaccines. The present study uses an ovine lymphatic cannulation model to study cell recruitment and antigen transport from the injection site into the afferent lymph, and how this is modulated by co-injection with MPL. Compared with saline, MPL injections caused only minor variations in lymph flow and no difference in cell number migrating into the lymph. MPL did, however, cause a significantly increased recruitment of neutrophils and monocytes, but not dendritic cells (DC) into the lymph for the first 12?h. Soluble ovalbumin (OVA) antigen flowed freely into the lymph over a 24-h period and was slightly reduced at 6-9?h in the MPL-injected sites. OVA-coated fluorescent 1-μ beads were initially transported predominantly by neutrophils and, from 24 to 72?h, by DC. MPL induced an increased and more sustained transport of beads by neutrophils and monocytes although it did not increase the phagocytic capacity of these cells. In contrast to aluminium adjuvant, MPL did not increase bead transport by DC at the later time point. These studies provide important new insights in the in vivo action of different adjuvants and the initial events that set up an immune response after vaccination.  相似文献   

6.
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined to prepare adjuvant delivery systems, which are designed for more effective delivery of the immunostimulatory adjuvant into APC. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. However, a rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants may also allow vaccines to be delivered mucosally.  相似文献   

7.
Adjuvant formulations and delivery systems for DNA vaccines   总被引:14,自引:0,他引:14  
DNA vaccines have become a reliable and major means to elicit immune responses in the past decade. We and others have attempted to obtain stronger, more long lasting, and optimized immune responses, subsequent to the pioneering works demonstrating the ability of plasmid DNA to raise specific immune responses. Advances in molecular biology and biotechnology allow the application of various adjuvants, immunologic agents that increase the antigenic response, in DNA vaccines. Adjuvants can be broadly separated into two classes based on their origin-genetic and conventional. Genetic adjuvants are expression vectors of cytokines or other molecules that can modulate immune responses when administered with a vaccine antigen. Conventional adjuvants are chemical compounds that enhance, prolong, or modulate antigen-specific immune responses. The use of an appropriate adjuvant is pivotal in optimizing the response to DNA vaccines. Moreover, DNA vaccines themselves possess their own adjuvant activity because of the presence of unmethylated CpG motifs in particular base contents. The route of inoculation is also a critical factor in determining the outcome of vaccination. It is well known that intramuscular injection preferentially induces Th1-type immunity, whereas particle bombardment by gene gun predominantly induces Th2-type response. This article focuses on providing the detailed procedure to construct genetic adjuvant plasmids and prepare DNA vaccines formulated with conventional adjuvants. We also offer a practical guide for the procedure of intramuscular DNA injection.  相似文献   

8.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

9.
Levitz SM  Golenbock DT 《Cell》2012,148(6):1284-1292
Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.  相似文献   

10.
Recent advances in veterinary vaccine adjuvants   总被引:5,自引:0,他引:5  
Next generation veterinary vaccines are going to mainly comprise of either subunit or inactivated bacteria/viruses. These vaccines would require optimal adjuvants and delivery systems to accord long-term protection from infectious diseases in animals. There is an urgent need for the development of new and improved veterinary and human vaccine adjuvants. Adjuvants can be broadly divided into two classes, based on their principal mechanisms of action: vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, ISCOMS and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns, e.g. LPS, MPL and CpG DNA, which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants might enhance this process in animals and humans alike.  相似文献   

11.
The use of particulate carriers holds great promise for the development of effective and affordable recombinant vaccines. Rational development requires a detailed understanding of particle up-take and processing mechanisms to target cellular pathways capable of stimulating the required immune responses safely. These mechanisms are in turn based on how the host has evolved to recognize and process pathogens. Pathogens, as well as particulate vaccines, come in a wide range of sizes and biochemical compositions. Some of these also provide 'danger signals' so that antigen 'senting cells (APC), usually dendritic cells (DC), acquire specific stimulatory activity. Herein, we provide an overview of the types of particles currently under investigation for the formulation of vaccines, discuss cellular uptake mechanisms (endocytosis, macropinocytosis, phagocytosis, clathrin-dependent and/or caveloae-mediated) for pathogens and particles of different sizes, as well as antigen possessing and presentation by APC in general, and DC in particular. Since particle size and composition can influence the immune response, inducing humoral and/or cellular immunity, activating CD8 T cells and/or CD4 T cells of T helper 1 and/or T helper 2 type, particle characteristics have a major impact on vaccine efficacy. Recently developed methods for the formulation of particulate vaccines are presented in this issue of Methods, showcasing a range of "cutting edge" particulate vaccines that employ particles ranging from nano to micro-sized. This special issue of Methods further addresses practical issues of production, affordability, reproducibility and stability of formulation, and also includes a discussion of the economic and regulatory challenges encountered in developing vaccines for veterinary use and for common Third World infectious diseases.  相似文献   

12.
Dendritic cells (DC) are required for priming antigen‐specific T cells and acquired immunity to many important human pathogens, including Mycobacteriuim tuberculosis (TB) and influenza. However, inappropriate priming of auto‐reactive T cells is linked with autoimmune disease. Understanding the molecular mechanisms that regulate the priming and activation of naïve T cells is critical for development of new improved vaccines and understanding the pathogenesis of autoimmune diseases. The serine/threonine kinase IKKα (CHUK) has previously been shown to have anti‐inflammatory activity and inhibit innate immunity. Here, we show that IKKα is required in DC for priming antigen‐specific T cells and acquired immunity to the human pathogen Listeria monocytogenes. We describe a new role for IKKα in regulation of IRF3 activity and the functional maturation of DC. This presents a unique role for IKKα in dampening inflammation while simultaneously promoting adaptive immunity that could have important implications for the development of new vaccine adjuvants and treatment of autoimmune diseases.  相似文献   

13.
Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A.  相似文献   

14.

Background

With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with “classical” adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model.

Methods/Findings

The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31® adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1) CD4+ T cell responses, (2) vaccine targeting/activation of dendritic cells (DC) and (3) protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31® induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-α with or without IFN-γ. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant.

Conclusion

Neonatal immunization with the IC31®- adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.  相似文献   

15.
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2–3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.  相似文献   

16.
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.  相似文献   

17.
Though Freund's complete adjuvant effectively increases immune response to vaccines in various species, its potentially severe inflammatory effects have led many animal researchers to seek alternative immunological adjuvants. In a study of New Zealand white rabbits, the authors compared the immune and adverse effects of Freund's complete adjuvant with the effects of two formulations of AdjuVac, an immunological adjuvant previously developed by their group. All three adjuvants improved humoral immune response but also caused inflammation. Inflammatory reactions caused by AdjuVac, however, tended to be less severe than those caused by Freund's complete adjuvant.  相似文献   

18.
DNA vaccines offer considerable promise for improvement over conventional vaccines. For the crucial step of delivering DNA vaccines intracellularly, electroporation (EP) has proven to be highly effective. This method has yielded powerful humoral and cellular responses in various species, including nonhuman primates. In an attempt to further improve DNA vaccination we used micron-size gold particles (which do not bind or adsorb DNA) as a particulate adjuvant which was coinjected with DNA intramuscularly into mice, followed by EP of the target site. The presence of gold particles accelerated the antibody response significantly. Maximum titers against hepatitis B surface antigen (HBsAg) were reached after one boost in 6 weeks, whereas 8 weeks were required without particles. These immunizations were effective in protecting mice against tumor challenge with cancer cells expressing HBsAg as a surrogate cancer antigen. Computer modeling of electric fields and gene expression studies indicate that gold particles do not stimulate EP and subsequent antigen expression. The particles may act as an attractant for immune cells, especially antigen presenting cells. We conclude that particulate adjuvants combined with DNA vaccine delivery by EP reduces the immune response time and may increase vaccine efficacy. This method may become valuable for developing prophylactic as well as therapeutic vaccines. The rapid response may be of particular interest in countering bio-terrorism.  相似文献   

19.
There has been a recent resurgence of interest into new and improved vaccine adjuvants. This interest has been stimulated by the need for new vaccines to combat problematic pathogens such as SARS and HIV, and to counter potential bioterrorist attacks. A major bottleneck in vaccine development is the low immunogenicity of purified subunit or recombinant proteins, creating the need for safe human adjuvants with high potency. A major problem in the search for the ideal adjuvant is that adjuvants that promote cell-mediated (Th1) immunity (e.g. Freund's complete adjuvant) generally have unacceptable local or systemic toxicity that precludes their use in human vaccines. There is a need for a safe, non-toxic adjuvant that is able to stimulate both cell-mediated and humoral immunity. Inulin-derived adjuvants that principally stimulate the innate immune system through their ability to activate the alternative complement pathway have proven ability to induce both cellular and humoral immunity. With their excellent tolerability, long shelf-life, low cost and easy manufacture, they offer great potential for use in a broad range of prophylactic and therapeutic vaccines. Based on successful animal studies in a broad range of species, human trials are about to get underway to validate the use of inulin-based adjuvants in prophylactic vaccines against hepatitis B, malaria and other pathogens. If such trials are successful, then it is possible that inulin-derived adjuvants will one day replace alum as the adjuvant of choice in most human prophylactic vaccines.  相似文献   

20.
Saponins are well recognised as potent immune stimulators, but their applicability as vaccine adjuvants have been limited due to associated toxicity. Formulation of saponin adjuvant with cholesterol and phospholipid produces the particulate ISCOMATRIX adjuvant, and when antigen is also contained within the particle, an ISCOM vaccine is produced. These particulate vaccines retain the adjuvant activity of the saponin component but without toxicity. Saponin-adjuvanted particulate vaccines have significant potential as a novel strategy in vaccine development. This review discusses (i) recent methodologies which have attempted to increase the flexibility and applicability of this technology by modifying either the vaccine composition or the mode of formulation; (ii) recent evaluations of these technologies for inducing protection against infectious diseases and as cancer immunotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号