首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The level of l-glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) is regulated in the rat brain by glucocorticoids. Following hypophysectomy, the concentration of brain glycerol-3-P dehydrogenase decreases to about 40% of the control. By immunotitration, we have demonstrated that this decrease in glycerol-3-P dehydrogenase activity is due to fewer enzyme molecules rather than less efficient ones. We also demonstrated that the enzyme remaining in the brain after hypophysectomy is identical to that found in the brains of control littermates, as determined by gel permeation chromatography, pH optimum, heat lability, electrophoretic mobility, and Ouchterlony double-diffusion analysis. Since the concentration of glycerol-3-P dehydrogenase in skeletal muscle is not regulated by glucocorticoids, we also compared the brain enzyme to the muscle enzyme. By the above criteria, skeletal muscle glycerol phosphate dehydrogenase is identical to the brain enzyme. This suggests that the same structural gene codes for glycerol-3-P dehydrogenase in brain and muscle and that the difference in response to glucocorticoids is due to the presence of a specific regulatory mechanism in brain that is absent in muscle.  相似文献   

2.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

3.
To reveal the reasons of age-specific change of heart sensitivity to stress, the content of oxidized and reduced NADP and activity of NADP-dependent dehydrogenase in myocardium of adult and old immobilized rats have been studied. It has been established that in the process of aging the amount of reduced NADP decreases in the old rat heart. At the same time the activity of NADP-dependent dehydrogenase decreases in postmitochondrial fraction of old rat myocardium as compared to adult rats. There is no change in the amount of reduced NADP in the heart of both rat age groups after 30-minute immobilization. The activity of NADP-dependent dehydrogenase in postmitochondrial fraction of myocardium in adult rats remains on the initial level while activation of NADP-dependent malate dehydrogenase and glucose 6-phosphate dehydrogenase appears in old rats.  相似文献   

4.
A threefold decrease in specific activity of glycerol-3-phosphate dehydrogenase was found on going from 800 nM to 10 nM enzyme concentration. According to ultracentrifugal analyses the dimeric glycerol-3-phosphate dehydrogenase (molecular weight 78,000) dissociates into monomers in the equilibrium mixture of its substrates and products. The concentration-dependent decrease in the specific activity is interpreted as a consequence of subunit dissociation and the estimated dissociation constants are 0.7 micro M and 3.5 micro M at 38 degrees C and 20 degrees C respectively. According to active-enzyme-band centrifugation experiments and kinetic analysis aldolase forms a complex with glycerol-3-phosphate dehydrogenase and this complex formation influences the specific activity of the dehydrogenase. The interaction between glycerol-3-phosphate dehydrogenase and aldolase can provide a regulatory mechanism at the branching point of glycolytic and lipid metabolic pathways.  相似文献   

5.
Measurements of succinate dehydrogenase and mitochondrial glycerol-3-phosphate dehydrogenase activities, iron, cytochrome c and myoglobin, were made on various hind-leg muscles, fast-twitch red and white muscle and heart and liver of male Wistar rats fed an iron-deficient diet on weaning. Rats fed the same diet and given 20 mg iron intraperitoneally as iron-dextran (Imferon) served as controls. For iron-repletion studies anemic rats (hemoglobin less than 7 g/dl) were given a single injection of 10 mg iron (Imferon) and the time course of change in the above parameters was followed up to 22 days after injection. The iron concentration of most iron-deficient muscles dropped to approx. 35% of control, the heart to 60% and liver to 13%. On repletion, the iron concentration of all tissues increase significantly by 4 days. While the levels of cytochrome c and myoglobin approximated the iron levels in muscle, they did not change significantly in the heart. Succinate dehydrogenase activity dropped profoundly in muscle, to 10-30% of control; on repletion, the activity increased significantly. Mitochondrial glycerol-3-phosphate dehydrogenase activity showed only small changes in iron-deficient tissues.  相似文献   

6.
The activities of several enzymes functioning in different areas of fuel catabolism were measured under standardized conditions, using crude homogenates of sartorius and ventricular muscle from outbred guinea-pigs and rabbits indigenous to high or low altitude. The activities of sartorius and myocardium were found to reflect the metabolic patterns known to be associated with white and red muscle. Both species had right ventricular hypertrophy at high altitude. The enzyme activities in the high altitude guinea-pig were not significantly different from those in the sea level animals. In the high altitude rabbit, compared with the low altitude rabbit, the activities of glyceraldehyde-3-phosphate deydrogenase and phosphofructokinase were greater in both the sartorius and myocardium. In addition, mitochondrial glycerol-3-phosphate dehydrogenase activity was greater in the sartorius at high altitude, while aspartate aminotransferase and beta-hydroxyacylcoenzyme A dehydrogenase activities were greater in the myocardium at high altitude. Succinate dehydrogenase activity was comparable at the two altitudes for both tissues. There was a greater proportion of skeletal muscle type lactate dehydrogenase in the high altitude rabbit myocardium but no difference was found with the guinea-pig.  相似文献   

7.
Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliary enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied. To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visulaized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione. For the visualization of ATP producint enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

8.
The effect of 120-h sleep deprivation on the activity of selected enzymes of energy metabolism in skeletal muscle was studied in seven healthy volunteers. The results showed a significant decrease in the activity of malate dehydrogenase, citrate synthase, glycerol-3-phosphate dehydrogenase and lactate dehydrogenase. Triosephosphate dehydrogenase, hexokinase, and hydroxyacyl-CoA-dehydrogenase activities showed an insignificant decrease. The findings are indicative of (1) decreased aerobic oxidation capacity; (2) reduced function of reducing-equivalent carriers from cytosol across the mitochondrial membrane; (3) relative accentuation of the non-aerobic glycolytic pathway; (4) a prediabetic type of muscle metabolism.  相似文献   

9.
Summary Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliairy enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied.To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visualized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione.For the visualization of ATP producing enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

10.
The synthesis of the enzymes of the glycerophosphate pathway in Neurospora has been examined during exponential growth of cells on acetate as the sole carbon source. After the addition of glycerol to the media, increases in the levels of both glycerokinase and a mitochondrial glycerol-3-phosphate dehydrogenase are observed within 1 h and fully induced levels are reached within one and a half mass doublings for glycerokinase and two and a half mass doublings for glycerol-3-phosphate dehydrogenase. The increase in glycerokinase activity represents de novo synthesis of enzyme as evidenced by the absence of immunologically related protein in uninduced cell extracts. The synthesis of both glycerokinase and glycerol-3-phosphate dehydrogenase can be totally inhibited by treatment of cells with 20 μg/ml cycloheximide. During incubation with 4 mg/ml chloramphenicol, there is normal synthesis of glycerokinase but a 30–50% inhibition of mitochondrial glycerol-3-phosphate dehydrogenase synthesis. However, under these conditions, in the cytosol fraction there is a significant increase in glycerol-3-phosphate dehydrogenase specific activity, suggesting that precursors are synthesized and accumulated in the cytosol prior to incorporation into mitochondria. Upon removal of chloramphenicol, the rate of appearance of glycerol-3-phosphate dehydrogenase into the mitochondria is up to four times greater than observed in untreated controls. It is concluded that both glycerokinase and glycerol-3-phosphate dehydrogenase are synthesized on cytoplasmic ribosomes, but that final assembly of glycerol-3-phosphate dehydrogenase into mitochondria is dependent on concomitant synthesis of mitochondrial inner membrane.  相似文献   

11.
Glycerol uptake, glycerol kinase (EC 2.7.1.30) and glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) activities are specifically induced during growth ofPseudomonas aeruginosa PAO on either glycerol or glycerol-3-phosphate. Mutants of strain PAO unable to grow on both glycerol and glycerol-3-phosphate were isolated. Mutant PFB 121 was deficient in an inducible, membrane-bound, pyridine nucleotide-independent, glycerol-3-phosphate dehydrogenase activity and PFB 82 was deficient in glycerol uptake and glycerol kinase and glycerol-3-phosphate dehydrogenase activities. Each mutant spontaneously reverted to wild phenotype, which indicates that each contained a single genetic lesion. These results demonstrate that membrane-bound, inducible glycerol-3-phosphate dehydrogenase is required for catabolism of both glycerol and glycerol-3-phosphate and provide suggestive evidence for a single regulatory locus that controls the synthesis of glycerol uptake, glycerol kinase, and glycerol-3-phosphate dehydrogenase inP. aeruginosa.  相似文献   

12.
We have screened the bloodstream form of Trypanosoma brucei for the presence of enzymes that could serve as markers for the microbodies and the highly repressed mitochondrion of this organism. None of seven known microbody enzymes were detected at all, but glycerol-3-phosphate oxidase, ATPase, isocitrate dehydrogenase, acid phosphatase and part of the hyperoxide dismutase and malate dehydrogenase activities were found to be particle-bound after fractionation of homogenates by differential centrifugation. Part of the ATPase activity was sensitive to oligomycin, an inhibitor of oxidative phosphorylation. This oligomycin-sensitive activity can serve as a specific marker for the mitochondria. More than 80% of the NAD+-linked glycerol-3-phosphate dehydrogenase in T. brucei was found to be particulate and latent. The enzyme could be activated by Triton X-100, by the combined action of sonication and salt, but not by salt alone, and partially by freezing and thawing. We conclude that the NAD+-linked glycerol-3-phosphate dehydrogenase is located inside an organelle.  相似文献   

13.
Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase ( gpd 1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.  相似文献   

14.
Rabbit antibodies to rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase, as well as monovalent Fab fragments of these antibodies were coupled to CNBr-activated Sepharose 4B. Rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase was then immobilized on a matrix by non-covalent binding to specific antibodies. Immobilized enzyme retains approximately 90% catalytic activity of the soluble dehydrogenase; pH optimum of activity and the Km value observed are changed as compared to the enzyme in solution. Glyceraldehyde-3-phosphate dehydrogenase immobilized on specific antibodies is shown to undergo adenine nucleotide-induced dissociation into dimers. The immobilized dimeric form of the enzyme thus obtained is catalytically active and capable of reassociating with the dimers of apoglyceraldehyde-3-phosphate dehydrogenase added in solution to the suspension of Sepharose.  相似文献   

15.
A novel pathway for lipid biosynthesis: the direct acylation of glycerol.   总被引:3,自引:0,他引:3  
The acylation of glycerol-3-phosphate by acyl-CoA is regarded as the first committed step for the synthesis of the lipoidal moiety in glycerolipids. The direct acylation of glycerol in mammalian tissues has not been demonstrated. In this study, lipid biosynthesis in myoblasts and hepatocytes was reassessed by conducting pulse-chase experiments with [1,3-(3)H]glycerol. The results demonstrated that a portion of labeled glycerol was directly acylated to form monoacylglycerol and, subsequently, diacylglycerol and triacylglycerol. The direct acylation of glycerol became more prominent when the glycerol-3-phosphate pathway was attenuated or when exogenous glycerol levels became elevated. Glycerol:acyl-CoA acyltransferase activity, which is responsible for the direct acylation of glycerol, was detected in the microsomal fraction of heart, liver, kidney, skeletal muscle, and brain tissues. The enzyme from pig heart microsomes displayed optimal activity at pH 6.0 and the preference for arachidonyl-CoA as the acyl donor. The apparent K(m) values for glycerol and arachidonyl-CoA were 1.1 mM and 0.17 mM, respectively. The present study demonstrates the existence of a novel lipid biosynthetic pathway that may be important during hyperglycerolemia produced in diabetes or other pathological conditions.  相似文献   

16.
Lysophosphatidylcholine (contrary to Lubrol WX, Triton X-100, digitonine and deoxycholate) solubilizes hamster brown fat mitochondrial glycerol-3-phosphate dehydrogenase without inactivation. Optimal ratio of lysophosphatidylcholine and membrane protein for solubilization of the enzyme was found to be 0.25 mg of lysophosphatidylcholine per mg protein. The activity of solubilized enzyme, however, was not affected by low concentrations of Lubrol WX, Triton X-100, digitonine, Zwittergent TM 314. Deoxycholate exhibited a pronounced inactivating effect. One-dimensional immunoelectrophoresis of the solubilized membrane proteins revealed 10 protein bands, 3-4 of which exhibited the enzyme activity. Two-dimensional immunoelectrophoresis revealed only a single main band of glycerol-3-phosphate dehydrogenase. This technique thus appears to be the best means for the identification of glycerol-3-phosphate dehydrogenase in the mixture of solubilized membrane proteins and for concentration of the enzyme activity in one major precipitating band.  相似文献   

17.
The stereospecificity of the enzyme-dependent oxidation of alpha-[4R-2H]NADH has been determined for four dehydrogenases: two pro-R specific enzymes, pig heart malate dehydrogenase and yeast alcohol dehydrogenase; and two pro-S specific enzymes, rabbit muscle glycerol-3-phosphate dehydrogenase and Rhodopseudomonas spheroides 3-hydroxybutyrate dehydrogenase. In all cases, an enzyme-dependent and substrate-specific oxidation to alpha-NAD+ is observed with the stereochemistry of oxidation identical with that found for the oxidation of the correspondingly labeled beta-NADH. The ability of dehydrogenases from diverse sources to utilize alpha-NADH in a stereochemically competent fashion is discussed in relation to proposed interactions between the nicotinamide sugar moiety and active site residues or obligatory alignments of the pyridine and sugar moieties.  相似文献   

18.
Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 micromol [U-13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain.  相似文献   

19.
The localization of glycerol-3-phosphate dehydrogenase inEscherichia coli   总被引:16,自引:0,他引:16  
Summary Starved cells ofEscherichia coli are dependent on an exogenous source of energy. It was of interest to ask whether compounds that are commonly used to supply energy must themselves be transported or whether they can be utilized on the outer portion of the cytoplasmic membrane. The utilization of glycerol-3-phosphate an energy source is totally dependent on the membrane-bound glycerol-3-phosphate dehydrogenase. In the present report glycerol-3-phosphate was used as the energy source for uptake of amino acids. A mutant was constructed which is unable to transport this ester and the starved mutant could not drive the uptake of glutamine with glycerol-3-phosphate. It is concluded that the enzyme is located on the internal surface of the membrane in intactE. coli cells. Further evidence was obtained by showing that no glycerol-3-phosphate dehydrogenase activity could be measured in either intact cells or spheroplasts using ferricyanide as electron acceptor, due to its impermeability. The activity could be measured after destruction of the membrane permeability barrier by toluenization. With membrane vesicles prepared according to Kaback's procedure nearly half of the dehydrogenase activity was accessible to ferricyanide as well as to impermeable competitive inhibitors of the enzyme. Partial inversion during preparation of vesicles is the most probable explanation for the results.A protion of this work was presented at the Miami Winter Symposia on the Molecular Basis of Biological Transprot, 1972.  相似文献   

20.
The activities of the enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase are inhibited by palmitoyl-coenzyme A and oleate. The two isoforms of fatty acid binding proteins (PI 6.9 and PI 5.4) enhance the activities of glycerol-3-phosphate dehydrogenase and fatty acid synthase in the absence of palmitoyl-coenzyme A or oleate and also protect them against palmitoyl-coenzyme A or oleate inhibition. Levels of fatty acid binding proteins, the activities of the enzymes fatty acid synthase and glycerol-3-phosphate dehydrogenase increase with gestation showing a peak at term. However, the activity of fatty acid synthase showed the same trend up to the 30th week of gestation and then declined slightly at term. With the advancement of pregnancy when more lipids are required for the developing placenta, fatty acid binding proteins supply more fatty acids and glycerol-3-phosphate for the synthesis of lipids. Thus a correlation exists between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号