首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
pH i recovery in acid-loaded Ehrlich ascites tumor cells and pH i maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO 3 -free media and at 25 mm HCO 3 , the measured pH i (7.26 and 7.82, respectively) was significantly more alkaline than the pH i . value calculated assuming the transmembrane HCO 3 gradient to be equal to the Cl gradient. Thus, pH i in these cells is not determined by the Cl gradient and by Cl/HCO 3 exchange.pH i recovery following acid loading by propionate exposure, NH 4 + withdrawal, or CO2 exposure is mediated by amiloride-sensitive Na+/H+ exchange in HCO3 free media, and in the presence of HCO 3 (25 mm) by DIDS-sensitive, Na+-dependent Cl/HCO 3 exchange. A significant residual pH i recovery in the presence of both amiloride and DIDS suggests an additional role for a primary active H+ pump in pH i regulation. pH i maintenance at steady-state involves both Na+/H+ exchange and Na+-dependent Cl/HCO 3 exchange.Acute removal of external Cl induces a DIDS-sensitive, Na+-dependent alkalinization, taken to represent HCO 3 influx in exchange for cellular Cl. Measurements of 36Cl efflux into Cl-free gluconate media with and without Na+ and/or HCO 3 (10 mm) directly demonstrate a DIDS-sensitive, Na+ dependent Cl/HCO 3 exchange operating at slightly acidic pH i (pHo 6.8), and a DIDS-sensitive, Na+-independent Cl/HCO 3 exchange operating at alkaline pH i (pH o 8.2).The excellent technical assistance of Marianne Schiødt and Birgit B. Jørgensen is gratefully acknowledged. The work was supported by the Carlsberg Foundation (B.K.) and by a grant from the Danish Natural Science Foundation (E.K.H. and L.O.S.).  相似文献   

2.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 3.
    Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

    4.
    Summary The area-specific coductance of the membrane in the acid and basic zones (denoted byG A andG B , respectively) ofChara cells was measured in flowing solutions, containing 5mm zwitterionic buffer, as a function of the external pH(denoted by pH0). During illuminationG A was 1 S/m2 for pH0 in the range 5 to 8.5, and increased markedly to 3 to 6 S/m2 at higher pH0.G B , however, was always larger thanG A during illumination with a typical magnitude of 5 to 15 S/m2 for pH0 6 to 12. Thus under many experimental conditions it is possible that there is no single correct value for the membrane area-specific conductance. A flow of current in the external medium between the acid and basic regions was found to be associated with pH banding, and also withG B exceedingG A . This current could be present in flowing solutions without added HCO 3 over a wide range of pH0 and at high (25mm) buffer concentration. Combining measurements ofG A andG B with measurements of the currents in the acid and basic zones (denoted byJ A andJ B , respectively), it was estimated that the resting (i.e. in the absence of net current flow) potential difference (PD) across the membranes within the individual zones (denoted byU A andU B ) was –265±20 and –183±5 mV, respectively, during illumination. Upon the removal of illumination at pH0-7.5,G A ,G B andJ B were found to decrease rapidly during the initial few hundred seconds. During this period (U B V m ) remained relatively constant. A transient hyperpolarization ofV m often occurred, the magnitude of which was correlated with the magnitude ofJ B prior to the removal of illumination. After some 0.5 to 1 ksec of darkness,G A andG B had both decreased considerably and nowG A G B andU A U B V m . Eventually, after 2 to 8 ksec of darkness, the membrane conductance was effectively homogeneous with a much smaller magnitude (typically<0.2S/m2) andV m was depolarized by typically 5 to 15 mV.  相似文献   

    5.
    An alternative approach to quantification of the contribution of non-QB-reducing centers to Chl a fluorescence induction curve is proposed. The experimental protocol consists of a far-red pre-illumination followed by a strong red pulse to determine the fluorescence rise kinetics. The far-red pre-illumination induces an increase in the initial fluorescence level (F25 μs) that saturates at low light intensities indicating that no light intensity-dependent accumulation of QA occurs. Far-red light-dose response curves for the F25 μs-increase give no indication of superimposed period-4 oscillations. F25 μs-dark-adaptation kinetics following a far-red pre-pulse, reveal two components: a faster one with a half-time of a few seconds and a slower component with a half-time of around 100 s. The faster phase is due to the non-QB-reducing centers that re-open by recombination between QA and the S-states on the donor side. The slower phase is due to the recombination between QB and the donor side in active PS II reaction centers. The pre-illumination-induced increase of the F25 μs-level represents about 4–5% of the variable fluorescence for pea leaves (∼2.5% equilibrium effect and 1.8–3.0% non-QB-reducing centers). For the other plant species tested these values were very similar. The implications of these values will be discussed.  相似文献   

    6.
    The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

    7.
    Summary We have chosen the MDCK cell line to investigate aldosterone action on H+ transport and its role in regulating cell membrane K+ conductance (G m K ). Cells grown in a monolayer respond to aldosterone indicated by the dose-dependent formation of domes and by the alkalinization of the dome fluid. The pH sensitivity of the plasma membrane K+ channels was tested in giant cells fused from individual MDCK cells. Cytoplasmic pH (pH i ) andG m K were measured simultaneously while the cell interior was acidified gradually by an extracellular acid load. We found a steep signoidal relationship between pH i andG m K (Hill coefficient 4.4±0.4), indicating multiple H+ binding sites at a single K+ channel. Application of aldosterone increased pH i within 120 min from 7.22±0.04 to 7.45±0.02 and from 7.15±0.03 to 7.28±0.02 in the absence and presence of the CO2/HCO 3 buffer system, respectively. We conclude that the hormone-induced cytoplasmic alkalinization in the presence of CO2/ HCO 3 is limited by the increased activity of a pH i -regulating HCO 3 extrusion system. SinceG m K is stimulated half-maximally at the pH i of 7.18±0.04, internal H+ ions could serve as an effective intracellular signal for the regulation of transepithelial K+ flux.  相似文献   

    8.
    Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

    9.
    The effects of the selective adenosine (ADO) A3receptor agonist IB-MECA (N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide) on cultured newborn rat cardiomyocytes were examined in comparison with ADO, the ADO A1receptor-selective agonistR-PIA (N6-R-phenylisopropyladenosine), or the ADO A3selective antagonist MRS 1191 (3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5 dicarboxylate), using digital image analysis of Feulgen-stained nuclei. At high concentration, IB-MECA (10 μM ) and ADO (200 μM) induced apoptosis; however,R-PIA or MRS 1191 did not have any detectable effects on cardiac cells. In addition, DNA breaks in cardiomyocytes undergoing apoptosis following treatment by IB-MECA were identifiedin situusing the nick end labeling of DNA (“TUNEL”-like) assay. In the presence of 10 μM IB-MECA, disorder in the contraction waves appeared, and a decrease in the frequency of beats was observed. Analysis with light microscopy revealed that the number of contracting cells decreased in a concentration-dependent manner. The A3receptor agonist IB-MECA caused an increase in intracellular free calcium concentration ([Ca2+]i). The drug produced a rapid rise followed by a sustained increase in [Ca2+]i, which lasted for 40–60 s. Finally, cessation of beating and Ca2+transients were observed. Full recovery of contractile activity and rhythmical Ca2+transients were observed 15–20 min after IB-MECA treatment. The induction of apoptosis in the cardiocytes by IB-MECA led to the appearance of features of apoptotic nuclei: the onset of condensation, compacting, and margination of nuclear chromatin. These effects were accompanied by the disintegration of the structural framework of the nucleus and nuclear breakdown. The results suggest that activation of the A3adenosine receptor may participate in the process of apoptosis in cardiomyocytes.  相似文献   

    10.
    Intracellular pH (pH i ), membrane potential (V m ) and membrane conductance (G m ) in fused proximal tubular cells of the frog kidney, were determined at three extracellular pH (pH o ) values, 7.5, 8.5 and 6.5. Imposed changes of pH o by ±1 pH unit induced parallel but smaller shifts of pH i . The alkaline milieu hyperpolarized the cells and increased G m , whereas the acid milieu depolarized and lowered G m . We subsequently introduced a weak acid and its conjugate base (acetic acid/acetate), or a weak base and its conjugate acid (NH3/NH 4 + ), at pH o 7.5, 8.5 and 6.5 to shift pH i -without altering pH o , or to shift pH i against imposed changes of pH o . From these experiments, we observed that under some circumstances V m varied with pH o but without G m or pH i changes, whereas under other circumstances changes of G m occurred during alterations of pH i while pH o and V m remained unaltered. At pH i 6.5 associated with V m –10 mV, G m dramatically increased to quasi-infinite values. This increase was not an artifact since G m returned to its control value following recovery to the control solution or in the presence of hyperosmotic solution. In conclusion, we demonstrate a differential regulation whereby V m and G m are controlled by pH o and pH i : pH o modulates mainly V m , and pH i modulates chiefly G m . Furthermore, at pH i 6.5 and V m –10 mV, our data reveal a large G m that tends towards infinite values in a reversible fashion.  相似文献   

    11.
    In Central European forestry the establishment of broad-leaved mixed forests is attaining increasing importance, but little information exists about gas exchange characteristics of some of the tree species involved, which are less abundant today. In an old-growth forest in Central Germany (Hainich, Thuringia), (i) I compared morphological and chemical leaf traits that are indicative of leaf gas exchange characteristics among eight co-existing species, and (ii) analysed photosynthetic parameters of saplings and adult trees (lower and upper canopy level) in four of these species (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.).Leaves from the upper canopy in the eight species studied varied significantly in their specific leaf area (12.9–19.4 m2 kg−1), stomatal density (125–313 stomata mm−2), leaf nitrogen concentration (95–157 mmol N m−2) and δ13C content (–27.81 to –25.85‰). F. excelsior and C. betulus were largely contrasting species, which suggests that the species, which were studied in more detail, include the widest difference in leaf gas exchange among the co-existing species. The saplings of the four selected species exhibited shade acclimated leaves with net photosynthesis rates at saturating irradiance (Amax) between 5.0 and 6.4 μmol m−2 s−1. In adult trees Amax of fully sunlit leaves was more variable and ranged from 10.5 (C. betulus) to 16.3 μmol m−2 s−1 (F. excelsior). However, less negative δ13C values in F. excelsior sun leaves point to a strong limitation in gas exchange. In the lower canopy of adult trees Amax of F. excelsior (12.0 μmol m−2 s−1) was also greater than that of A. pseudoplatanus, C. betulus and T. platyphyllos (5.0–5.6 μmol m−2 s−1). This can be explained by the small leaf area and the absence of shade leaves in mature F. excelsior trees. Thus, a considerable variation in leaf traits and gas exchange was found among the co-existing tree species. The results suggest that species-specific characteristics increase the spatial heterogeneity of canopy gas exchange and should be taken into account in the interpretation and prediction of gas flux from mixed stands.In der Forstwirtschaft Mitteleuropas gewinnt die Begründung von Laubmischwäldern zunehmend an Bedeutung, aber über Eigenschaften im Gasaustausch einiger beteiligter Baumarten, die heute nicht so häufig sind, ist wenig bekannt. In einem Altbestand in Mitteldeutschland (Hainich, Thüringen) habe ich (i) morphologische und chemische Eigenschaften von Sonnenblättern, die Hinweise auf Charakteristika im Blattgaswechsel geben, an acht koexistierenden Baumarten untersucht, und (ii) Photosyntheseparameter von juvenilen und adulten Bäumen (unteres und oberes Kronenniveau) von vier dieser Arten (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.) erhoben.Blätter aus dem oberen Kronenraum der acht untersuchten Arten variierten signifikant in der spezifischen Blattfläche (12.9–19.4 m2 kg−1), der Stomatadichte (125–313 Stomata mm−2), dem Blattstickstoffgehalt (95–157 mmol N m−2) und den δ13C-Werten (–27.81 bis –25.85‰). In diesem Kollektiv zeigten F. excelsior und C. betulus groβe Unterschiede, was darauf hindeutet, dass die Arten, die genauer untersucht wurden, die Spannweite an Gaswechseleigenschaften unter den koexistierenden Baumarten umfassen. Die Jungpflanzen der vier ausgewählten Arten besaßen Schattenblätter, deren Netto-Photosyntheserate bei hoher Lichtintensität (Amax) zwischen 5.0 and 6.4 μmol m−2 s−1 variierte. An Sonnenblättern von Altbäumen war Amax variabler und lag zwischen 10.5 (C. betulus) und 16.3 μmol m−2 s−1 (F. excelsior). Allerdings weisen hohe δ13C-Werte in Sonnenblättern von F. excelsior auf eine starke Limitierung des Gasaustauschs hin. Auch in der unteren Krone der Altbäume war Amax von F. excelsior (12.0 μmol m−2 s−1) höher als Amax von A. pseudoplatanus, C. betulus und T. platyphyllos (5.0–5.6 μmol m−2 s−1). Dies kann durch die geringe Blattfläche und die Abwesenheit von Schattenblättern in der Krone adulter Bäume von F. excelsior erklärt werden. Zwischen den koexistierenden Baumarten wurde somit in Bezug auf Blatteigenschaften und Photosyntheseparameter eine erhebliche Variation festgestellt. Die Ergebnisse legen nahe, dass artspezifische Eigenschaften die räumliche Heterogenität des Gaswechsels im Kronenraum erhöhen und bei der Interpretation und Vorhersage von Gasflüssen über Mischbeständen berücksichtigt werden sollten.  相似文献   

    12.
    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-13C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate ↔ 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (Go) or aspartate (AO) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 ±0.03) μmol/g; A0 = (1.49±0.05) μmol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min−1 and 0.72 min−1, respectively; the flux of this cycle is about (1.07±0.02) μmol min-1 g-1. Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin, only 41% of acetyl-CoA is formed from glucose while the rest is derived from endogenous substrates; and ii) the exchange between aspartate and oxaloacetate or between glutamate and 2-oxoglutarate is fast in comparison with the biological transformation of intermediate compounds by the citric acid cycle.  相似文献   

    13.
    Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

    14.
    Summary Passive proton permeability of gastrointestinal apical membrane vesicles was determined. The nature of the pathways for proton permeation was investigated using amiloride. The rate of proton permeation (k H + was determined by addition of vesicles (pH i = 6.5) to a pH 8.0 solution containing acridine orange. The rate of recovery of acridine orange fluorescence after quenching by the acidic vesicles ranged from 4 × 10–3 (gastric parietal cell stimulation-associated vesicles; SAV) and 5 × 10–3 (duodenal brush-border membrane vesicles; dBBMV) to 11 × 10+–3 sec–1 (ileal BBMV; iBBMV). Amiloride, 0.03 and 0.1 mm, significantly reduced the rate of proton permeation in dBBMV and iBBMV, but not gastric SAV. The decreases in k H + were proportionately greater in iBBMV as compared with dBBMV. The presence of Na+/H+ exchange was demonstrated in both dBBMV and iBBMV by proton-driven (pH i < pH o ) 22Na+ uptake. Evidence was also sought for the conductive nature of pathways for proton permeation. Intravesicular acidification, again determined by quenching of acridine orange fluorescence, was observed during imposition of K+-diffusion potential ([K+] i [K+ o ). In dBBMV and iBBMV, intravesicular acidification was enhanced in the presence of the K+-ionophore valinomycin, indicating that the native K+ permeability is rate limiting. In the presence of valinomycin, the K+-diffusion potential drove BBMV intravesicular acidification to levels close to the electrochemical potential. In gastric SAV, acidification was not limited by the K+ permeability. Valinomycin was without effect, but the K+/H+ ionophore nigericin enhanced acidification in gastric SAV, illustrating the low proton permeability of these membranes. Amiloride, 0.03–1 mm, resulted in concentration-dependent reductions of K+-diffusion potential-driven acidification in dBBMV and iBBMV but not in gastric SAV. These data demonstrate that proton permeation in the three membrane types is rheogenic. The sensitivity of the proton-conductive pathways in intestinal BBMV to high concentrations of amiloride correlated with the presence of the Na+/H+ antiport and indicates that this transmembrane protein may represent a pathway for proton permeation.We thank Ruth Briggs for assistance with the Na/H exchange experiments. This work was supported by a grant from the Medical Research Council (G8418056CA).  相似文献   

    15.
    Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

    16.
    Summary Anion exchange transport in the mouse lacrimal gland acinar cell membrane was studied by measuring the intracellular H+ (pHi) and Cl (aCli) activities with double-barreled ion-selective microelectrodes. In a HCO 3 -free solution of pH 7.4 (HEPES/Tris buffered), pHi was 7.25 andaCli was 33mm. By an exposure to a HCO 3 (25mm HCO 3 /5% CO2, pH 7.4) solution for 15 min,aCli was decreased to 25mm and pHi was transiently decreased to about 7.05 within 1 min, then slowly relaxed to 7.18 in 15 min. Intracellular HCO 3 concentration [HCO 3 ]i, calculated by the Henderson-Hasselbalch's equation, was 11mm at 1 min after the exposure and then slowly increased to 15mm. Readmission of the HCO 3 -free solution reversed the changes inaCli and pHi. The intracellular buffering power was about 40mm/pH. An addition of DIDS (0.2mm) significantly inhibited the rates of change inaCli, pHi, and [HCO 3 ]i caused by admission/withdrawal of the HCO 3 , solution and decreased the buffer value. Replacement of all Cl with gluconate in the HCO 3 solution increased pHi, and readmission of Cl decreased pHi. The rates of these changes in pHi were reduced by DIDS by 32–45% but not by amiloride (0.3mm). In the HCO 3 solution, a stimulation of intracellular HCO 3 production by exposing the tissue to 25mm NH 4 + increasedaCli significantly. While in the HCO 3 -free solution or in the HCO 3 , solution containing DIDS, exposure to NH 4 + had little effect onaCli. All of these findings were consistent with the presence of a reversible, disulfonic stilbene-sensitive Cl/HCO 3 exchanger in the basolateral membrane of the acinar cells. The possibility of anion antiport different from one-for-one Cl/HCO 3 exchange is discussed.  相似文献   

    17.
    Summary The intracellular pH (pH i ) of Ehrlich ascites tumor cells, both in the steady state and under conditions of acid loading or recovery from acid loading, was investigated by measuring the transmembrane flux of H+ equivalents and correlating this with changes in the distribution ratio of dimethyloxazolidine-2,4-dione (DMO). The pH i of cells placed in an acidic medium (pH o below 7.15) decreases and reaches a steady-state value that is more alkaline than the outside. For example when pH o is acutely reduced to 5.5, pH i falls exponentially from 7.20 ± 0.06 to 6.29 ± 0.04 with a halftime of 5.92 ± 1.37 min, suggesting a rapid influx of H+. The unidirectional influx of H+ exhibits saturation kinetics with respect to extracellular [H+]; the maximal flux is 15.8 ± 0.05 mmol/(kg dry wt · min) andK m is 0.74 ± 0.09 × 10–6 m.Steady-state cells with pH i above 6.8 continuously extrude H+ by a process that is not dependent on ATP but is inhibited by anaerobiosis. Acid-loaded cells (pH i 6.3) when returned to pH o 7.3 medium respond by transporting H+, resulting in a rapid rise in pH i . The halftime for this process is 1.09 ± 0.22 min. The H+ efflux measured under similar conditions increases as the intracellular acid load increases. An ATP-independent as well as an ATP-dependent efflux contributes to the restoration of pH i to its steady-state value.  相似文献   

    18.
    Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

    19.
    Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

    20.
    Genetic variation for intrinsic water use efficiency (W i) and related traits was estimated in a full-sib family of Quercus robur L. over 3 years. The genetic linkage map available for this F1 family was used to locate quantitative trait loci (QTL) for W i, as estimated by leaf carbon stable isotope composition (δ 13C) or the ratio of net CO2 assimilation rate (A) to stomatal conductance to water vapour (g w) and related leaf traits. Gas exchange measurements were used to standardize estimates of A and g w and to model the sensitivity of g w to leaf-to-air vapour pressure deficit (sgVPD). δ 13C varied by more than 3‰ among the siblings, which is equivalent to 40% variation of W i. Most of the studied traits exhibited high clonal mean repeatabilities (>50%; proportion of clonal mean variability in global variance). Repeatabilities for δ 13C, leaf mass per area (LMA) and leaf nitrogen content were higher than 70%. For δ 13C, ten QTLs were detected, one of which was detected repeatedly for all 3 years and consistently explained more than 20% of measured variance. Four genomic regions were found in which co-localizing traits linked variation in W i to variations in leaf chlorophyll and nitrogen content, LMA and sgVPD. A positive correlation using clonal means between δ 13C and A/g w, as well as a co-localisation of QTL detected for both traits, can be seen as validation of the theoretical model linking the genetic architecture of these two traits.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号