首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M Hamad 《Cytobios》1999,97(384):35-44
The potential of intestinal intraepithelial lymphocyte (IEL) precursors to repopulate the lymphoid components of lethally-irradiated mice was evaluated. Mice injected with total IEL, or IEL depleted of mature T cells, died within 2 weeks post-irradiation. Injection of T cell-depleted Thy-1.1 IEL and Thy-1.2 bone marrow (BM) into lethally-irradiated Thy-1.2 mice resulted in survival rates greater than 90%. The vast majority of thymocytes analysed at 2, 6, and 10 weeks post-treatment were Thy-1.2+. The Thy-1.1+ and Thy-1.2+ cells were detected in the spleen 2 and 6 weeks post-reconstitution. After 10 weeks, the majority of splenic T cells were Thy-1.2+. The majority of Thy-1+ IEL were of the Thy-1.1 subtype at 2 and 6 weeks after reconstitution. After 10 weeks, Thy-1.2+ IEL became the predominant subtype. Flow cytometry (FCM) analyses of Thy-1.1+ IEL showed that Thy-1.1 was co-expressed with CD3, CD4, CD5, CD8, TCR alpha beta and TCR gamma delta T cell markers. These findings indicate that IEL precursors home preferentially to gut epithelia and generate complex IEL phenotypic subsets.  相似文献   

2.
To study the possible involvement of perforin (Pfp)- and/or Fas-dependent cytotoxicity pathways in a T cell-mediated negative regulation of Ig production, we used the T cell-induced Ig-allotype suppression model. T splenocytes from Igha/a mice, when neonatally transferred into histocompatible Igha/b F1 or Ighb/b congenic hosts, are intrinsically able to totally, specifically, and chronically suppress the production of IgG2a of the Ighb haplotype (IgG2ab). It has not been established whether the suppression effectors, which are anti-IgG2ab MHC class I-restricted CD8+ T cells, cytolyse IgG2ab+ B targets or whether they only silence Ig production. In this study, using T cells from Igha/a Pfp+/+ or Pfpo/o mice, the latter obtained by crossbreeding, and B cells from Ighb/b Fas+/+ or Faslpr/lpr (lymphoproliferation) mice in appropriate adoptive transfer models, we demonstrated that: 1) under blockage of the Pfp-mediated pathway, Igha/a T cells were still able to induce suppression against wild-type IgG2ab+ B cells, 2) IgG2ab+ B cells with impaired Fas expression were also subjected to suppression by WT Igha/a T splenocytes, and 3) the suppression establishment was totally inhibited when both Pfp- and Fas-dependent mechanisms were simultaneously blocked, i.e., when Igha/a Pfpo/o T cells were used to induce suppression against Ighb/b Faslpr/lpr B cells. These results provide the first demonstration of the existence of alternative or simultaneous use of the major cytotoxic mechanisms in a T cell-mediated down-regulation of an Ig production.  相似文献   

3.
Primary and secondary cytotoxic T lymphocyte responses to minor alloantigens can be suppressed by priming host mice with a high dose (10(8) cells) of alloantigenic donor spleen cells (SC). Such suppression is antigen specific and transferable into secondary hosts with T cells. One interpretation of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments described here exclude veto T cell participation in transferable alloantigen-specific suppression, and demonstrate the operation of an alloantigen-specific host-derived T suppressor (Ts) cell. The origin of the Ts has been studied directly by using Thy-1-disparate BALB/c mice. The cell responsible for the transfer of suppression of a secondary CTL response to B10 minors was of the host Thy-1 allotype, and so originated in the host spleen and was not introduced in the priming inoculum. Secondly, antigen-specific Ts generated in CBA female mice against B10 minors could act on CTL responses to an unequivocally non-cross-reactive-third party antigen (H-Y), provided the two antigens were expressed on the same cell membrane. Such third-party suppression is incompatible with the operation of veto T cells. Depletion of Thy-1.2+ or Lyt-2+ cells from the suppression-inducing donor SC inoculum did not abrogate suppression induction in BALB/c mice; instead, suppression was enhanced. The demonstration of veto cell activity in similarly primed mice by other groups of investigators indicates that both types of suppression may operate. However, our results show that only antigen-specific Ts can mediate the transferable suppression of CTL responses to alloantigens.  相似文献   

4.
In cyclophosphamide (CP)-induced tolerance, a long lasting skin allograft tolerance was established in many H-2-identical strain combinations without graft vs host disease. Destruction of donor-reactive T cells of host origin, followed by intrathymic clonal deletion of these cells, has been revealed to be the chief mechanisms of this system. Here, we studied the fate of host-reactive populations in donor-derived T cells of C3H/He (C3H) (H-2k, Mls-1b, Mls-2a) mice rendered CP-induced tolerant to AKR/J (AKR) (H-2k, Mls-1a, Mls-2b), by assessing AKR-derived Thy-1.1+ T cells bearing TCR V beta 3 that are specifically reactive with Mls-2a-encoded Ag of the recipient C3H mice. In the AKR-derived Thy-1.1+ lymph node cells of the C3H mice that had been treated with AKR spleen cells plus CP, CD4(+)-V beta 3+ T cells were obviously decreased by day 10 after the CP treatment. At this stage, the Thy-1.1+ T cells were not detected in the C3H thymus, suggesting that the obvious decrease of CD4(+)-V beta 3+ T cells of AKR origin was not due to intrathymic clonal deletion in the recipient C3H mice. Therefore, the destruction of the host-reactive mature T cells of donor origin, as well as that of the donor-reactive mature T cells of host origin, occurred by the CP treatment at the induction phase. Furthermore, after the establishment of intrathymic mixed chimerism in the recipient C3H mice, V beta 3+ T cells were not detected among the Thy-1.1+ T cells of AKR origin in the mixed chimeric thymus, suggesting that the host-reactive immature T cells repopulated from the injected donor hematopoietic cells were clonally deleted in the recipient thymus. These two mechanisms appear to prevent graft vs host disease in CP-induced tolerance.  相似文献   

5.
(C57BL/6 x DBA/2)F1 mice transplanted with parental C57BL/6 spleen cells become splenic chimeras, show donor antihost cytotoxic T cell activity, and lose their T cell-mediated, humoral, and natural immunity. Injection of anti-asialo-GM1 (ASGM1) into transplanted mice strongly suppresses splenic cytotoxic activity and causes a significant reduction of spleen cells expressing ASGM1, Thy-1, and Lyt-2. In vitro treatment of spleen cells from transplanted mice with antibody and complement shows that the cytotoxic effector cells are ASGM1+, Thy-1+, Lyt-2+, L3T4-, NK1.1-, and H-2d-, hence of donor origin. The cytotoxic effector cells are specific for H-2d targets and lack NK activity. In an attempt to explore whether in vivo elimination of the cytotoxic effector cells has any influence on splenic chimerism or humoral immunity, F1 mice injected with parental splenocytes were treated with anti-ASGM 1. Results show that this treatment eliminates a substantial proportion of cytotoxic effector cells but has no effect on splenic chimerism or restoration of humoral immunity. It therefore appears that cytotoxic effector cells are not primarily responsible for induction of chimerism or suppression of humoral immunity. In support of this injection of parental spleen cells with the nu/nu mutation induces killer cells in F1 mice but fails to induce splenic chimerism or immunosuppression. In contrast, injection of parental spleen cells with the bg/bg mutation generates both splenic chimerism and suppression of humoral immunity although their ability to generate cytotoxic effector cells in F1 hosts is seriously impaired and comparable to the cytotoxic potential of C57BL/6 nu/nu cells. It is concluded that the ASGM1 + cytotoxic T cells are not primarily responsible for splenic chimerism and suppression of humoral immunity and that the two effects are likely caused by parental cells with a different phenotype and function.  相似文献   

6.
Collagen-induced arthritis can be suppressed by i.v. injection of intact type II collagen (CII) but not type I collagen before immunization. To identify the mechanism mediating this suppression, splenocytes were obtained from mice injected with CII or OVA and administered to recipients that were subsequently immunized with CII. Mice receiving cells from donors injected with CII had a lower incidence of arthritis and lower antibody titers than those receiving cells from OVA-injected donors. Treatment of cells with 3000 rad of gamma-irradiation abrogated the suppression. To determine the phenotype of these donor cells, spleen cells were fractionated by adherence to plates coated with mouse anti-IgG to enrich for Thy-1+ phenotype. Thy-1+ cells injected into naive mice could significantly suppress arthritis. Further depletion of T cell subsets by panning revealed that depletion of CD4+ cells prevented the transfer of suppression whereas removal of CD8+ cells had no effect. Isolated CD4+ cells transferred into naive mice were also suppressive. Recently the Pgp-1 (Ly-24) Ag has been described to identify a unique memory subset of CD4+ cells when present on the cell surface. In CII-tolerized spleen populations, removal of the Pgp-1+ (Ly-24) subset of T cells abrogated suppression and transfer of isolated Pgp-1+ cells suppressed arthritis. These findings indicate that the Pgp-1+ subset of CD4+ cells can suppress collagen-induced arthritis and suggest that a CD4+ memory cell down-regulates autoimmunity. In addition, treatment of donor animals with cyclosporin, which inhibits the development of CD4+ cells, abrogated suppression.  相似文献   

7.
When MRL/Mp(-)+/+(MRL/+) mice are lethally irradiated and then reconstituted with MRL/Mp-lpr/lpr (MRL/lpr) bone marrow and/or spleen cells, these MRL/+ mice develop "lpr-GVHD" which is similar to acute graft-versus-host disease (GVHD). Using a Thy-1 congenic strain of MRL/lpr mice (MRL/lpr-Thy-1.1), we analyzed T cell subpopulations in the thymus and spleen of MRL/+ mice suffering from lpr-GVHD. lpr-GVHD was induced in MRL/+ mice by transplantation of bone marrow cells (BMC) from MRL/lpr-Thy-1.1 mice; severe lymphocyte depletion associated with fibrosis was observed in the spleens after 7 weeks of bone marrow transplantation (BMT). Thymocytes of the host MRL/+ thymus were replaced with donor-derived cells from the early stage of lpr-GVHD, whereas in the spleen, a small number of host T cells (Thy-1.2+) (4-5%) were retained until the late stage of lpr-GVHD. Donor-type (Thy-1.1+) T cell subsets were not different from those of nontreated MRL/+ mice in the thymus, whereas in the spleen. CD8+ T cells (Thy-1.1+) reached a peak at 5 weeks after BMT, and CD4+ T cells (Thy-1.1+), a peak at 6 weeks. The elimination of T cells from MRL/lpr BMC had no evident effect on the prevention of lpr-GVHD. T cell subpopulations showed a similar pattern to GVHD elicited by MHC differences. Analyses of autoreactive T cells expressing V beta 5 or V beta 11 revealed that autoreactive T cells were deleted from the peripheral lymph nodes. Interestingly, the levels of IgG anti-ssDNA antibodies markedly increased, and both IgM and IgG rheumatoid factors slightly increased 5 to 7 weeks after BMT. These findings are discussed in relation to not only GVHD elicited by MHC differences but also autoimmune diseases.  相似文献   

8.
Triggering of the CD3:TCR complex by optimal concentrations of anti-CD3, anti-TCR beta-chain, and allogeneic stimulator cells induced dramatically higher levels (fivefold for anti-CD3, greater than 10-fold for anti-TCR beta-chain, 84-fold for alloantigen) of IL-2 production in spleen CD4+8- T cells than their thymic counterparts, despite comparable levels of CD3 and TCR beta-chain expression. The nature of the reduced IL-2 production was examined by analysis of anti-CD3-induced IL-2 production at the single cell level. The frequency of IL-2-producing cells in spleen CD4+8- T cells (40.0%) was approximately threefold that of thymus CD4+8- T cells (14.5%). Furthermore, the average IL-2 levels among positive IL-2 producers was also approximately threefold higher in spleen CD4+8- T cells than their thymic counterparts. Adoptive transfer of purified Thy-1.2+ CD4+8- T cells into Thy-1.1-congenic hosts provided a physiologic and histocompatible system that enabled identification of transferred donor (Thy-1.2+) among a sea of host (Thy-1.2-) CD4+ T cells, whose immune function with respect to IL-2 inducibility was examined after isolation by electronic cell sorting. Donor CD4+ T cells thus isolated from host spleen shortly (1 day) after i.v. transfer of thymus CD4+8- T cells were similar to freshly isolated thymus CD4+8- T cells in that they both produced little IL-2 in response to anti-CD3. However, by day 3 post-transfer, IL-2 production by donor CD4+8- T cells had more than doubled and by day 8, they produced IL-2 levels comparable to those of host spleen CD4+8- T cells. A similar acquisition of high level IL-2 inducibility in thymus CD4+8- T cells upon i.v. transfer into Thy-1.1-congenic hosts was also observed using allogeneic cells as the stimulus of IL-2 production. When thymus CD4+8- T cells were intra-thymically transferred into Thy-1.1-congenic hosts, those donor cells that emigrated to the periphery became high IL-2 producers in a time-dependent manner, whereas those that remained inside the thymus showed no signs of up-regulation in IL-2 inducibility. Intrathymic transfer of CD4-8- thymocytes revealed that the most recent thymic emigrant CD4+8- T cells contained few IL-2-producing cells and were not functionally mature with respect to high level IL-2 inducibility.  相似文献   

9.
The IgG2a response to sheep erythrocytes is examined in different congenic strains of mice. B10, B6, and C57BL/Ks animals produce a low level of IgG2a antibodies to SRBC during the primary response in vivo. They remain low responders after secondary challenge in vitro. Total spleen cells or nylon-purified T cells from these low responders inhibit the IgG2a response of H-2 compatible-responding mice in a mixed culture system. This suppression is mediated by Thy-1+, Ly-1-, Ly-2+, and I-J+T cells only present in the spleen of low responding animals. These suppressor T cells appear to be IgG2a- and SRBC-specific. Function of non-H-2-linked genes as regulators of suppressor T cells differentiation is discussed.  相似文献   

10.
Phenotypes and functions of T cells in the liver were studied after an i.p. inoculation with viable Listeria monocytogenes in mice. T cells in the liver of untreated C3H/HeN mice (C3H; H-2k, Mls-2a) contain Thy-1.2+TCR-alpha beta + cells as a majority and Thy-1.2+TCR-gamma delta + cells and Thy-1.2-TCR-gamma delta + cells as minorities. The liver of untreated C3H mice did not contain T cells expressing V beta 3 and V beta 11, which are potentially autoreactive against self-superantigens of Mls-2a and Dvbl, respectively. On days 3 to 6 after infection, Thy-1.2-CD4lowTCR-alpha beta + T cells or Thy-1.2-TCR-gamma delta + T cells increased significantly in number and proportion in the liver whereas T cells with these phenotypes were hardly detected in the spleen, lymph nodes, peripheral blood, and peritoneal cavity during the course of the infection. The Thy-1.2-CD4lowTCR-alpha beta T cells contained V beta 3 or V beta 11-bearing cells in high frequencies. The potentially autoreactive V beta 3- or V beta 11-bearing T cells disappeared from the liver on day 7 after infection. Furthermore, the V beta 3+ and V beta 11+ cells but not V beta 8+ cells disappeared after culture for 24 h at 37 degrees C. In vitro stimulation of liver T cells using anti-V beta 11 mAb showed no proliferative response. These results suggest that the potentially autoreactive clones with Thy-1.2-CD4low phenotypes, which increased in number after listerial infection, may be anergized after interaction with self-Ag and may be programmed to die. These potentially autoreactive clones induced in the liver of Listeria-infected mice may not be functionally relevant to the host defense against Listeria.  相似文献   

11.
We established the phenotype of T splenocytes (Ts) from Igha/a BALB/c mice sensitized against B splenocytes from the Ighb/b CB20 congenic mice that induce Igh-1b (IgG2a of the Ighb haplotype) suppression. This was achieved by studying the action of anti-T cell subset mAb on the capacity of Ts to induce this chronic allotypic suppression in Igha/b (BALB/c x CB20)F1 mice. The Ts were treated with cytotoxic anti-mouse CD4 or anti-mouse CD8 rat mAb in vitro before their injection into the Igha/b newborns or in vivo after their injection into the Igha/b newborns. Exposure to either anti-CD8 or anti-CD4 mAb in vitro or in vivo leads to loss of the capacity of Ts to induce Igh-1b allotypic suppression. Mixing CD4+-cell-depleted Ts and CD8+-cell-depleted Ts preparations restored the capacity of the cells to induce Igh-1b suppression. Thus, both CD4+ CD8- Ts and CD4- CD8+ Ts are required for the induction of this allotypic suppression. Bone marrow cells and B splenocytes from Igh-1b-suppressed adult Igha/b mice were shown to be able to durably express Igh-1b when transferred into irradiated Igha/a BALB/c hosts whereas whole spleen cells from such donors failed to do it. Abrogation of Igh-1b suppression by in vivo anti-CD8 mAb treatment was achieved in adult Igha/b heterozygotes but with a lower efficiency than in adult Ighb/b homozygotes, all being chronically Igh-1b suppressed. The CD4- CD8+ cell population essential for maintaining this suppression is resistant to in vivo 600 rad irradiation and seems to be slightly inhibited by in vivo administration of free Igh-1b.  相似文献   

12.
Limiting dilution analysis of the stem cells for T cell lineage   总被引:2,自引:0,他引:2  
Stem cell activities of bone marrow, spleen, thymus, and fetal liver cells for T cell lineage were studied comparatively by transferring the cells from these organs through i.v. or intrathymus (i.t.) route into right leg- and tail-shielded (L-T-shielded) and 900 R-irradiated recipient mice, which were able to survive without supplying hemopoietic stem cells. Cells from B10.Thy-1.1 (H-2b, Thy-1.1) mice were serially diluted and were transferred into L-T-shielded and irradiated C57BL/6 (H-2b, Thy-1.2) mice, and 21 days later the thymus cells of recipient mice were assayed for Thy-1.1+ cells by flow cytofluorometry. The percentage of recipient mice possessing donor-type T cells was plotted against the number of cells transferred, and the stem cell activity in each cell source was expressed as the 50% positive value, the number of donor cells required for generating donor-type T cells in the thymuses of 50% of recipient mice. In i.v. transfer experiments, the activity of bone marrow cells was similar to that of fetal liver cells, and about 100 times and nearly 1000 times higher than those of spleen cells and thymus cells, respectively. In i.t. transfer experiments, the number of cells required for generating donor-type T cells was much lower than that in i.v. transfer experiments, although the ratio in 50% positive values between i.v. and i.t. transfers differed among cell sources. In i.t. transfers, the 50% positive value of bone marrow cells was five times, 400 times, and 500 times higher than that of fetal liver cells, spleen cells, and thymus cells, respectively. Our previous finding that stem cells are enriched in the spleens of mice which were whole body-irradiated and marrow-reconstituted 7 days earlier was confirmed also by the present limiting dilution assay carried out in i.v. as well as i.t. transfers.  相似文献   

13.
Two subpopulations of stem cells for T cell lineage   总被引:2,自引:0,他引:2  
An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells, the generation of donor-derived T cells being observed in two out of 14 recipients transferred with as few as 1.5 X 10(4) cells. The stem cell activity of spleen cells was estimated to be about 1% of that of bone marrow cells, and no activity was found in thymus cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. Spleen cells showed a markedly high level of activity 7 days after the reconstitution, followed by a decline, whereas the activity of bone marrow cells was very low on day 7 and increased crosswise. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells. Such patterns of compartmentalization of stem cells in the spleen and bone marrow of irradiated recipients completely conform to the general scheme of the relationship between restricted stem cells and less mature stem cells, including pluripotent stem cells, which became evident in other systems such as in the differentiation of spleen colony-forming cells or of stem cells for B cell lineage.  相似文献   

14.
A rat thymic epithelial cell line IT45-R1 has been previously described as secreting soluble molecules that in vitro chemoattract rat hemopoietic precursor cells. The development of such an in vitro migration assay was based on the ability of cells to migrate across polycarbonate filters in Boyden chambers. In the present paper, by using the same strategy, we studied murine bone marrow cells capable of migrating in vitro toward IT45-R1 conditioned medium. The responding cells were shown to represent a minor bone marrow subpopulation characterized by a low capacity to incorporate tritiated thymidine in vitro (less than 10% of control). Moreover, this cell subset was considerably impoverished with respect to granulocyte-macrophage CFU (less than 7% of control) and pluripotent hemopoietic stem cells (less than 12% of control). Potential generation of T cells of donor-type in the lymphoid organs of irradiated recipients was measured by using C57BL/Ka Thy-1.1 and Thy-1.2 congenic mice. Thy-1.1 irradiated mice were injected intrathymically or intravenously with the selectively migrated cell subset of Thy-1.2 donor-type bone marrow cells. The use of an i.v. transfer route allowed us to show that these cells possess thymus-homing and colonization abilities. In a time-course study after intrathymic cell transfer, these migrated cells were able to generate Thy-1.2+ donor-type thymocytes represented by all cortical and medullary cell subsets in a single wave of repopulation from day 20 to day 30 after transfer, with a peak around days 23 to 25. The degree of repopulation closely resembled that seen with unfractionated bone marrow cells in terms of absolute numbers of donor cells per thymus (82% of control, 22 x 10(6) Thy-1.2+ cells) as well as in percent donor cells per thymus (105% of control). Thy-1.2+ cells were also detected in the lymph nodes and the spleens of reconstituted recipient mice. Taken together, these results support the idea that the supernatant of the established thymic epithelium IT45-R1 induces the migration of a murine bone marrow subset that contains hemopoietic stem cells already committed to the lymphoid lineage (i.e., pre-T cells).  相似文献   

15.
We studied engraftment in a murine model of allogeneic bone marrow (BM) transplantation. Recipient C57BL/6 (H-2b) mice were conditioned with single-dose (9 or 7.5 Gy) total body irradiation (TBI), fractionated (4 X 3.3 Gy) TBI, hyperfractionated (8 X 1.65 Gy) TBI, 2 X 120 mg/kg cyclophosphamide (CY) followed by 7.5 Gy TBI, or 300 mg/kg CY followed by 9 Gy total lymphoid irradiation (TLI). Conditioned mice were transplanted with BALB/c (H-2d) BM supplemented with splenocytes (BMS) to facilitate graft-vs-host disease (GVHD). Ex vivo T cell depletion of the BMS with anti-Thy-1.2 antibody and complement protected recipients from lethal GVHD. Engraftment was measured in transplanted animals by serotyping peripheral blood mononuclear cells with anti-H-2-specific antibodies and complement. Mice that were given a T cell-depleted BMS transplant after conditioning with 9 Gy TBI, fractionated TBI, or CY plus TBI showed a 99 to 100% incidence of engraftment. However, if the T cell-depleted graft was given to mice conditioned with hyperfractionated TBI, 7.5 Gy TBI, or CY plus TLI, only 3 to 32% of the animals engrafted. BM which was not T cell-depleted engrafted in 63 to 100% of the mice regardless of the conditioning used. Nonengrafted mice tested with anti-host type antibody demonstrated autologous recovery. We conclude that engraftment or failure/rejection of BM in transplanted mice is determined in part by a dynamic equilibrium between T cells present in the donor graft and the surviving hemopoietic cells in the conditioned recipient. More intensive conditioning of the recipient allows engraftment of T cell-depleted, mismatched BMS. Such conditioning is not limited to a single modality, but can be achieved with single-dose TBI, fractionated TBI, or with TBI combined with CY. These findings have timely and important implications for the current understanding of engraftment in human allogeneic BM transplantation following T cell depletion.  相似文献   

16.
B6 mice bearing disseminated syngeneic FBL leukemia can be cured by treatment on day 5 with 180 mg/kg cyclophosphamide and 2 x 10(7) adoptively transferred syngeneic immune spleen cells. Complete tumor eradication in this model requires more than 30 days and is dependent upon the transfer of specifically immune T cells. To evaluate the relative contributions of host and donor T cells to tumor elimination and the maintenance of tumor immunity, donor cells obtained from Thy congenic mice were used for adoptive transfer. Thus, host and donor T cells could be readily distinguished by the expression of either Thy-1.2 or Thy-1.1 antigen. The results demonstrated that the majority of immunologically competent T cells present in hosts cured by adoptive therapy were of host origin. A small population of donor T cells, however, persisted long after transfer. At day 60, a time point shortly after tumor eradication had been completed, 5% of splenic T cells were of donor origin, and by day 120 this percentage had decreased to less than 2%. Functional studies performed at both time points revealed that this small number of residual donor T cells contained the subpopulation of tumor-reactive T cells present in the host. Thus, host T cells did not make a substantial contribution to the expression of the anti-tumor response and presumably have little role in either tumor eradication or the long-term maintenance of tumor immunity.  相似文献   

17.
Dysfunction of irradiated thymus for the development of helper T cells   总被引:2,自引:0,他引:2  
The development of cytotoxic T cells and helper T cells in an intact or irradiated thymus was investigated. C57BL/6 (H-2b, Thy-1.2) mice were whole body-irradiated, or were irradiated with shielding over either the thymus or right leg and tail, and were transferred with 1.5 X 10(7) bone marrow cells from B10.Thy-1.1 mice (H-2b, Thy-1.1). At various days after reconstitution, thymus cells from the recipient mice were harvested and a peanut agglutinin low-binding population was isolated. This population was further treated with anti-Thy-1.2 plus complement to remove host-derived cells and was assayed for the frequency of cytotoxic T cell precursors (CTLp) and for the activity of helper T cells (Th). In the thymus of thymus-shielded and irradiated mice, Th activity reached normal control level by day 25, whereas CTLp frequency remained at a very low level during these days. In the thymus of whole body-irradiated mice, generation of CTLp was highly accelerated while that of Th was retarded, the period required for reconstitution being 25 days and more than 42 days for CTLp and Th, respectively. Preferential development of CTLp was also seen in right leg- and tail-shielded (L-T-shielded) and irradiated recipients. Histological observation indicated that Ia+ nonlymphoid cells were well preserved in the thymus of thymus-shielded and irradiated recipients, whereas in L-T-shielded and irradiated recipients, such cells in the medulla were markedly reduced in number. These results suggest strongly that the generation of Th but not CTLp is dependent on radiosensitive thymic component(s), and that such components may represent Ia+ cells themselves in the medulla or some microenvironment related to Ia+ cells.  相似文献   

18.
19.
Irradiated CBA/J mice transplanted with H-2 compatible, minor histocompatibility disparate B10.BR bone marrow develop graft-versus-host disease (GVHD) if mature T lymphocytes are added to the marrow inoculum. In the setting of mild GVHD (receiving 10(4) or 10(5) T cells), by phenotypic analysis, lymphoid reconstitution occurs normally within 4 to 6 wk but there is a profound deficiency in the ability of splenic lymphocytes to respond to polyclonal activators such as LPS and Con A. This unresponsiveness is attributable to active suppression mediated by cells that express Thy-1 and can be removed with leucine methyl ester treatment. Thus, splenocytes from mice with GVHD suppress responses of normal T and B lymphocytes. Moreover, depletion of these suppressor cells restores normal function to splenocytes from mice with GVHD, and B cells isolated from these mice respond normally to T-dependent and -independent stimulation. Finally, IFN-gamma plays an important role in this suppression, because a neutralizing anti-IFN-gamma mAb significantly removes suppression of normal cells and restores functional responses of lymphocytes from mice with GVHD. These results provide insights into the mechanisms of immunodeficiency associated with GVHD, and suggest novel strategies for possible therapies for this disorder.  相似文献   

20.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号