首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocytes were isolated from rats and then loaded with the fluorescent Ca2+ indicator quin2. Glucagon caused a sustained increase (at least 5 min) in the fluorescence of the quin2-loaded cells; the increase was much greater than that observed with control, non-quin2-loaded, cells. These observations indicate that glucagon caused an increase in cytoplasmic free Ca2+ concentration [( Ca2+]c). The effects of glucagon were mimicked if forskolin (to activate adenylate cyclase), dibutyryl cyclic AMP or bromo cyclic AMP were added directly to the cells. Thus an increase in cyclic AMP concentration may mediate the effect of glucagon on [Ca2+]c. If 4 beta-phorbol 12-myristate 13-acetate (PMA; an activator of protein kinase C) was added to the cells before glucagon, the magnitude of the increase in [Ca2+]c was greatly diminished. If PMA was added after glucagon it caused a lowering of [Ca2+]c. These effects of PMA on the glucagon-induced increase in [Ca2+]c could not be mimicked if [Ca2+]c was increased by the Ca2+-ionophore ionomycin. Thus an event involved in the mechanism by which glucagon increases [Ca2+]c appears to be required for the action of PMA. If [Ca2+]c was increased by forskolin, dibutyryl cyclic AMP or bromo cyclic AMP, the effect of PMA on [Ca2+]c was similar to that observed when glucagon was used to elevate [Ca2+]c. When [Ca2+]c was raised by dibutyryl cyclic AMP the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine did not prevent the subsequent addition of PMA from causing [Ca2+]c to decrease. These observations suggest that PMA can inhibit the cyclic AMP-induced increase in [Ca2+]c independently of any changes in cyclic AMP concentration. Glucagon appears to increase [Ca2+]c by releasing intracellular stores of Ca2+ and stimulating net influx of Ca2+ into the cell; PMA greatly diminishes both of these effects.  相似文献   

2.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

3.
Calcium is an important regulator of cell function, and may be influenced by the intracellular sodium content. In the present study, the Na(+)-ionophore, monensin, was used to investigate the interrelationship between changes in intracellular Na+ concentration ([Na+]i) and elevation of cytosolic Ca2+ concentration ([Ca2+]i) in FRTL-5 thyroid cells. Cytoplasmic Ca2+ levels were measured using the fluorescent dye, indo-1. Monensin induced a dose-dependent increase in [Ca2+]i in FRTL-5 cells. Inhibitors of intracellular Ca2+ release, TMB-8 and ryanodine, were unable to prevent the monensin effect on [Ca2+]i. The alpha 1-receptor antagonist, prazosin, did not block the monensin-stimulated increase in [Ca2+]i. In the absence of extracellular calcium there was a marked diminution in the monensin effect on [Ca2+]i, yet calcium channel antagonists (nifedipine, diltiazem and verapamil) did not inhibit the response. Replacement of Na+ by choline chloride in the medium depressed the monensin-evoked rise in [Ca2+]i by up to 84%. Furthermore, addition of the Na(+)-channel agonist, veratridine, elicited an increase in [Ca2+]i, even though less dramatic than that caused by monensin. Ouabain increased the resting cytosolic Ca2+ concentration as well as the magnitude of the monensin effect on [Ca2+]i. The absence of any effect on the Na(+)-ionophore evoked increase in [Ca2+]i upon addition of tetrodotoxin (TTX) excluded a possible involvement of TTX-sensitive Na+ channels. These data show that the rise in [Ca2+]i induced by increasing [Na+]i is largely dependent on both external Na+ and Ca2+. Calcium entry appears not to involve voltage-dependent or alpha 1-receptor sensitive Ca2+ channels, but may result from activation of an Na(+)-Ca2+ exchange system.  相似文献   

4.
Jan CR  Jiann BP  Lu YC  Chang HT  Su W  Chen WC  Yu CC  Huang JK 《Life sciences》2002,70(11):1337-1345
The effects of triethyltin on Ca2+ mobilization in human PC3 prostate cancer cells have been explored. Triethyltin increased [Ca2+]i at concentrations larger than 3 microM with an EC50 of 30 microM. Within 5 min, the [Ca2+]i signal was composed of a gradual rise and a sustained phase. The [Ca2+]i signal was reduced by half by removing extracellular Ca2+. The triethyltin-induced [Ca2+]i increases were inhibited by 40% by 10 microM nifedipine, nimodipine and nicardipine, but were not affected by 10 microM of verapamil or diltiazem. In Ca2+-free medium, pretreatment with thapsigargin (1 microM), an endoplasmic reticulum Ca+ pump inhibitor, reduced 200 microM triethyltin-induced Ca+ increases by 50%. Pretreatment with U73122 (2 microM) to inhibit phospholipase C did not alter 200 microM triethyltin-induced [Ca2+]i increases. Incubation with triethyltin at a concentration that did not increase [Ca2+]i (1 microM) in Ca2+-containing medium for 3 min potentiated ATP (10 microM)- or bradykinin (1 microLM)-induced [Ca2+]i increases by 41 +/- 3% and 51 +/- 2%, respectively. Collectively, this study shows that the environmental toxicant triethyltin altered Ca2+ handling in PC3 prostate cancer cells in a concentration-dependent manner: at higher concentrations it increased basal [Ca2+]i; and at lower concentrations it potentiated agonists-induced [Ca2+]i increases.  相似文献   

5.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

6.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

7.
Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.  相似文献   

8.
The cytoplasmic Ca2+ concentration ([Ca2+]i) was monitored in individual guinea-pig pancreatic alpha 2-cells exposed to modulators of glucagon release. Addition of the stimulatory amino acid arginine resulted in a sustained increase in [Ca2+]i, whereas the inhibitor glucose had the opposite effect. Epinephrine, the beta-adrenergic agonist isoproterenol, the adenylate cyclase activator forskolin and 8-bromo-cAMP transiently raised [Ca2+]i provided that the cells had been pretreated with glucose. However, simultaneous presence of glucose was not required and the effect occurred even in the absence of extracellular Ca2+. Carbachol, the alpha 2-adrenergic agonist clonidine and the sulfonylurea tolbutamide lacked effects on [Ca2+]i. In addition to providing support for the concept that glucagon release is positively modulated by [Ca2+]i, the results demonstrate that cAMP raises [Ca2+]i in the alpha 2-cells by mobilizing calcium incorporated in response to glucose.  相似文献   

9.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

10.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

11.
The effect of arginine vasopressin (AVP) on Na+ kinetics was examined in cultured rat vascular smooth muscle cells (VSMC) and rat renal papillary collecting tubule cells (RPCT) by the direct measurement of intracellular sodium concentration [(Na+]i) using fluorescence dye; SBFI. AVP increased [Na+]i in a dose-dependent manner at a concentration of 10(-9) M or higher in rat VSMC but did not affect [Na+]i in rat RPCT. The calcium (Ca2+)-free solution completely blocked the increasing effect of AVP on [Na+]i in rat VSMC. A Ca2+ ionophore, ionomycin (1-2 x 10(-6) M) increased [Na+]i both in rat VSMC and RPCT. The Ca2(+)-free solution abolished the ionomycin-increased [Na+]i both in rat VSMC and RPCT. These results therefore indicate that after binding the V1 receptor AVP increases [Na+]i mediated through an increase in cellular Ca2+ uptake in VSMC.  相似文献   

12.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

13.
Rat liver mitochondria were incubated at 30 degrees C with 4 mM ATP in a medium similar in electrolyte composition to that of hepatic cytosol. Under these conditions, a net increase in mitochondrial adenine nucleotides was observed that was dependent on the concentration of free Ca2+ [( Ca2+]) in the incubation medium. At 0.2 microM [Ca2+] or less, there was no demonstrable uptake of adenine nucleotides; at 0.4 microM [Ca2+], or greater, net uptake occurred. The calcium-dependent accumulation of nucleotides by mitochondria required Mg2+ in the incubation medium and was insensitive to carboxyatractyloside. The uptake of adenine nucleotides was enhanced by the addition of antimycin A or antimycin A together with oligomycin. Accumulation of nucleotides appeared to be associated with a small increase in mean mitochondrial volume, but the membrane potential was not affected. No uptake or loss of NAD-NADH by mitochondria was detected. Ruthenium red failed to inhibit the calcium-dependent uptake of adenine nucleotides by the mitochondria, indicating that stimulation of this process by Ca2+ does not involve transport of the cation into mitochondria by the Ca2+ uniporter. Because glucagon acts to elevate cytosolic [Ca2+] from approximately 0.2 microM to 0.6 microM, the same range affecting nucleotide uptake, it is proposed that the increase in mitochondrial adenine nucleotides that follows treatment with glucagon is mediated by the rise in cytosolic [Ca2+] produced by the hormone. This hypothesis was supported by the observation that epinephrine and A23187, agents that raise cytosolic [Ca2+], increased the content of mitochondrial adenine nucleotides in isolated hepatocytes. Furthermore, cells, incubated under calcium-depleting conditions, had a diminished response to glucagon.  相似文献   

14.
The influence of the transmembrane Na+ gradient on the intracellular free calcium concentration, [Ca2+]i, was studied in Sepharose gel-filtered platelets from healthy human subjects, using the Ca-sensitive fluorescent dye, fura-2. Raising the internal Na+ concentration, [Na+]i, by Na+ pump inhibition with 0.05 mM ouabain, without changing external Na+ did not cause a significant increase in [Ca2+]i. Substitution of extracellular Na+ by iso-osmolar sucrose induced a rapid (half-time about 2 min) and significant rise in [Ca2+]i; this effect was amplified in Na-loaded platelets. Partial restitution of external Na+ in these cells with increased [Ca2+]i promoted a significant and rapid Na+ concentration-dependent fall in [Ca2+]i; little decline in [Ca2+]i was observed if K+ was used instead of Na+. These observations represent in vitro evidence for the existence of a Na/Ca exchange mechanism in human platelets that may, in vivo, participate in the control of [Ca2+]i.  相似文献   

15.
The effect on cytosolic Ca2+ concentration ([Ca2+]i) of cAMP analogues and the adenylate cyclase-stimulating agents forskolin, isoproterenol and glucagon has been examined in an insulin-secreting beta-cell line (HIT T-15) using fura 2. All these manipulations of the cAMP messenger system promoted a rise in [Ca2+]i which was blocked by the Ca2+ channel antagonists verapamil and nifedipine or by removal of extracellular Ca2+. The action of the adenylate cyclase activator forskolin was glucose-dependent. The results suggest that cAMP elevates [Ca2+]i in HIT cells by promoting Ca2+ entry through voltage-sensitive Ca2+ channels, not through mobilization of stored Ca2+. Activation of Ca2+ influx may be an important component of the mechanisms by which cAMP potentiates fuel-induced insulin release.  相似文献   

16.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

17.
Recordings of [Ca2+]i in single AR42J cells loaded with Fura 2 were used to study regulation of [Ca2+]i oscillation. Continuous stimulation with the cholecystokinin analogue, (t-butyloxycarbonyl-Tyr-(SO3)-norleucine-Gly-Trp-Nle-Asp-2-phenylethyl ester) or carbachol evoked long lasting oscillation in [Ca2+]i. Removal of CCK-JMV-180 after brief stimulation did not abruptly stop the oscillation. Rather, removal of CCK-JMV-180 resulted in time-dependent reduction in amplitude with little change in frequency of oscillation. The patterns of [Ca2+]i oscillation were affected by activation of protein kinase C and protein kinase A. However, down-regulation of protein kinase C activity did not prevent stimulation of [Ca2+]i oscillation. Hence, we conclude that an active protein kinase C pathway is not crucial for [Ca2+]i oscillation in this cell line. Variation in extracellular Ca2+ concentration (Ca2+out) was used to further characterize the oscillation. Reducing Ca2+out to approximately 10 microM resulted in a time dependent inhibition of [Ca2+]i oscillation. Subsequent step increases in Ca2+out up to 2-3 mM resulted in increased amplitude and frequency of oscillation. Further increase in Ca2+out or an increase in plasma membrane permeability to Ca2+, brought about by an increase in pHo, resulted in increased amplitude, decreased frequency, and modified shape of the [Ca2+]i spikes. These observations point to the existence of regulatory mechanisms controlling the duration of Ca2+ release and entry during [Ca2+]i oscillation.  相似文献   

18.
The effect of the antidepressant mirtazapine on cytosolic free Ca2+ concentration ([Ca2+]i) and viability has not been explored in any cell type. This study examined whether mirtazapine alters Ca2+ levels and causes cell death in osteoblast-like cells using MG63 human osteosarcoma cells as a model. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Mirtazapine at concentrations above 250 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. The mirtazapine-induced Ca2+ influx was sensitive to blockade of nifedipine and verapamil. In Ca(2+)-free medium, after pretreatment with 1.5 mM mirtazapine, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 2 microM CCCP (a mitochondrial uncoupler), and 1 microM ionomycin failed to release more stored Ca2+; conversely, pretreatment with thapsigargin, CCCP and ionomycin abolished mirtazapine-induced Ca2+ release. Inhibition of phospholipase C with 2 microM U73122 did not change mirtazapine-induced [Ca2+]i, increase. Seal of Ca2+ movement across the plasma membrane with 50 microM extracellular La3+ enhanced 1 microM thapsigargin-induced [Ca2+]i increase, suggesting that Ca2+ efflux played a role in lowering thapsigargin-induced [Ca2+]i increase; however, the same La3+ treatment did not alter mirtazapine-induced [Ca2+]i increase. At concentrations of 500 microM and 1000 microM, mirtazapine killed 30% and 60% cells, respectively. The cytotoxicity was not reversed by chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, mirtazapine induced a [Ca2+]i increase by causing Ca2+ release from stores and Ca2+ influx from extracellular space. Furthermore, mirtazapine caused cytotoxicity at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

19.
1. Effects of high K+ on cytosolic free Ca concentration ([Ca2+]i) in rat parotid cells were studied using quin2. 2. High K+ elevated [Ca2+]i in a dose-dependent manner in normal and Ca-free media. The elevation of [Ca2+]i induced by high K+ was less in the latter medium. 3. High K+ depolarized the membrane in a dose-dependent manner in normal and Ca-free media. 4. Although monensin increased [Ca2+]i, high K+ did not affect 22Na uptake into cells. 5. After treatment with oligomycin, high K+ but not carbachol raised [Ca2+]i. 6. We suggest that high K+ increases [Ca2+]i due to mobilizing Ca2+ from the intracellular storage site which does not need energy.  相似文献   

20.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号