首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity for self-maintenance of the bone marrow osteogenic precursor cells from the skeletal bones and from the bones induced by implantation of decalcified bone matrix is compared. Transplantation in diffusion chambers is employed as the test system. Osteogenesis in the bone marrow transplants isolated from the skeletal bone lasts several months, whereas osteogenesis in the bone marrow transplants isolated from induced bone stops after the second month. Fibroblasts arising in the monolayer cultures of the skeletal bone marrow retained their osteogenic potencies after repeated passages. On the contrary, fibroblasts from the monolayer cultures of induced bone marrow lost their osteogenic capacity after the second passage. Thus, contrary to osteogenic precursors of the skeletal bone, osteogenic precursors of induced bone tissue had a very limited self-maintaining capacity after the cessation of induction.  相似文献   

2.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   

3.
The dynamics of erythropoiesis during the bone restoration and under the conditions of perturbing influence: fracture and hemolytic anemia have been studied in the experiment. It is found that under the conditions of callus formation the process of proliferation and differentiation of red cells in the bone marrow is inhibited. The observed effect of erythropoiesis inhibition may be caused by the intercellular interaction of regenerating tissues in their "struggle" for microphages, which, while being the centre of the erythroid insula secure the maturation of erythroid precursors, and at the same time they can take part in the bone formation process.  相似文献   

4.
5.
Mesenchymal stem cells established from bone marrow (FetMSC) and limb bud (M-FetMSC) of early human embryo, as well as spheroids derived these cells, were induced to undergo osteogenic and adipogenic differentiation. Differentiated cells exhibited the activity of metalloproteinase (MMP)-9, -2, and -1. Its activity was different in osteogenic and adipogenic cells, as well as in monolayer cultures (2D) and cell spheroids (3D). The direct correlation between the level of adipogenic differentiation and gelatinases MMP-9 and MMP-2 activities in both cell lines in 2D and 3D culture was shown. M-FetMSC cells in 2D culture 12 days in culture during showed low potential for adipogenesis and reduced activity of MMP-2 and MMP-9. The low level of adipogenic differentiation in 2D M-FetMSC culture was accompanied with increased MMP-1 activity and enhanced differentiation (3D culture) resulted in a significant increase of both MMP activities. MMP-1 activity varied oppositely. MMP-1 activity declined in 3D cultures with a higher level of adipogenic differentiation. The level of osteogenic differentiation was similar in both cell lines during 2D and 3D cultivation. MMP-1 and -9 activities in both cell lines were not associated with osteogenic differentiation. MMP-2 and MMP-2 activity in these cells remained unchanged. The results suggest MMP implication in FetMSC and М-FetMSC differentiation. The difference in MMP activities during the cell differentiation may be caused by variations in the microenvironment or ECM properties in 2D and 3D cultures.  相似文献   

6.
By means of electron microscopy, cytochemistry and radioautography with 3H-thymidine, the bone marrow stromal cells have been studied in the zones of endochondral osteogenesis in the rabbit and rat femoral bones. In the stromal cells demonstrating a high alkaline phosphatase activity are distinguished: perivascular, reticular fibroblastic, osteogenic cells. Populations of the perivascular phosphatase-positive cells include poorly differentiated DNA-synthesizing forms, as well as cells with signs of differentiation into stromal fibroblasts. Cleft-like spaces in cytoplasm of the fibroblastic reticular cells are, probably, formed as a result of lymphocyte-like mononuclears passing through. Phagocyting stromal elements are presented by macrophages, having perivascular localization and including into composition of erythroblastic islets. Mononuclear macrophages are revealed also on the surface of osseous trabecules, where they participate in destruction of hemopoetic and osteogenic cells.  相似文献   

7.
Recently tremendous progress has been evidenced by the advancements in developing innovative three-dimensional(3 D)scaffolds using various techniques for addressing the autogenous grafting of bone. In this work, we demonstrated the fabrication of porous polycaprolactone(PCL) scaffolds for osteogenic differentiation based on supercritical fluid-assisted hybrid processes of phase inversion and foaming. This eco-friendly process resulted in the highly porous biomimetic scaffolds with open and interconnected architectures. Initially, a 2~3 factorial experiment was designed for investigating the relative significance of various processing parameters and achieving better control over the porosity as well as the compressive mechanical properties of the scaffold. Then, single factor experiment was carried out to understand the effects of various processing parameters on the morphology of scaffolds. On the other hand, we encapsulated a growth factor, i.e., bone morphogenic protein-2(BMP-2), as a model protein in these porous scaffolds for evaluating their osteogenic differentiation. In vitro investigations of growth factor loaded PCL scaffolds using bone marrow stromal cells(BMSCs) have shown that these growth factor-encumbered scaffolds were capable of differentiating the cells over the control experiments. Furthermore, the osteogenic differentiation was confirmed by measuring the cell proliferation, and alkaline phosphatase(ALP) activity, which were significantly higher demonstrating the active bone growth. Together, these results have suggested that the fabrication of growth factor-loaded porous scaffolds prepared by the eco-friendly hybrid processing efficiently promoted the osteogenic differentiation and may have a significant potential in bone tissue engineering.  相似文献   

8.
Interspecific grafts of limb buds and femurs on the chorioallantoic membrane of 5-day-old hosts and into the somatopleure of 3-day-old hosts were carried out between quail and chick embryos. Due to their different nuclear features, the cells of the two species can be identified in the chimeric bones resulting from the endochondral ossification which occurs in the explanted tissues. By following the cell lineage in the bone and marrow we were able to show that the hemopoietic and the osteogenic (comprising osteoblasts, osteocytes, and chondrocytes) cell lines have different embryological origins. The osteogenic line is derived from the limb bud mesenchyme, while the hemopoietic cells are brought into the bone marrow via the circulation. In the fixed cells of the marrow two categories have to be distinguished: the reticular cells originating from the bone rudiment and the endothelial cells which invade the cartilage and are of hematogenous origin. The osteoclasts belong to the hemopoietic cell line and are not derived from any cell type of the osteogenic line.  相似文献   

9.
Experimental osteoarthritis induced by Candida albicans in rats was studied using micro-computed tomography (micro-CT). When C. albicans cells at a nonlethal dose were intravenously injected into 40 rats, joint swelling was induced in 24 rats. Two or more joints were affected in 10 of the 24 rats. Tarsal regions of the hind paw were affected most frequently, followed by elbows of the fore paw. Micro-CT analysis in vivo showed that erosions of the affected tarsal joint bones were apparent several days after the onset of swelling. Thereafter, severe surface roughness and disintegration in the joint bones progressed during the development of arthritis. Three-dimensional (3D) trabecular microstructures and changes in 3D bone parameters were characterized ex vivo with calcanei from affected hind paws. Three-dimensional morphology showed coarsening of the trabecular distribution and weakening of the trabecular connectivity in arthritic bones. These morphological changes were quantitatively confirmed by changes in 3D bone parameters measured from consecutively scanned bone slices. Micro-CT has been shown to be useful for quantifying morphological changes occurring in Candida arthritic bones.  相似文献   

10.
11.
Li S  Quarto N  Longaker MT 《PloS one》2010,5(11):e14033

Background

As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone.

Methods

BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling.

Results

Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1.

Conclusions

Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts.  相似文献   

12.
Specific binding sites for the peptide hormone somatostatin have previously been demonstrated in long bones from neonatal rats. In the present study, the distribution of somatostatin receptors during embryonic bone formation has been investigated using the stable radioiodinated somatostatin analogue, SDZ 204-090. Somatostatin receptors in rat long bones were first detectable at the time of invasion of the cartilage model by osteogenic cells. Initially, receptors were detectable throughout the region occupied by osteogenic cells. As bone growth proceeded, however, receptors were restricted to the region of most recent invasion of the hypertrophic cartilage, where osteoid had not yet been deposited. In vivo labelling studies in neonatal rats were carried out to identify the cells bearing somatostatin receptors. Receptors were present in a restricted region of the metaphysis, immediately adjacent to the hypertrophic cartilage. Chondrocytes, osteoclasts, and mature osteoblasts were not labelled by the radioligand. The labelled cells were often apposed to remnants of cartilage matrix and stained positively for the osteoblast marker, alkaline phosphatase. Thus the cells with specific somatostatin-binding sites were probably osteoblast precursor cells. Specific binding was detectable in all endochondral bones examined, including those of the skull, but no specific binding was found in the membrane bones of the skull. These data suggest that somatostatin is involved in the regulation of osteoblast differentiation during endochondral bone formation.  相似文献   

13.
14.
15.
This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (??MEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in ??MEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that ??MEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in ??MEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.  相似文献   

16.
Kim SN  Bae SJ  Kwak HB  Min YK  Jung SH  Kim CH  Kim SH 《Amino acids》2012,42(4):1455-1465
We investigated the in vitro and in vivo osteogenic activity of licochalcone A. At low concentrations, licochalcone A stimulated the differentiation of mouse pre-osteoblastic MC3T3-E1 subclone 4 (MC4) cells and enhanced the bone morphogenetic protein (BMP)-2-induced stimulation of mouse bi-potential mesenchymal precursor C2C12 cells to commit to the osteoblast differentiation pathway. This osteogenic activity of licochalcone A was accompanied by the activation of extracellular-signal regulated kinase (ERK). The involvement of ERK was confirmed in a pharmacologic inhibition study. Additionally, noggin (a BMP antagonist) inhibited the osteogenic activity of licochalcone A in C2C12 cells. Licochalcone A also enhanced the BMP-2-stimulated expression of various BMP mRNAs. This suggested that the osteogenic action of licochalcone A in C2C12 cells could be dependent on BMP signaling and/or expression. We then tested the in vivo osteogenic activity of licochalcone A in two independent animal models. Licochalcone A accelerated the rate of skeletal development in zebrafish and enhanced woven bone formation over the periosteum of mouse calvarial bones. In summary, licochalcone A induced osteoblast differentiation with ERK activation in both MC4 and C2C12 cells and it exhibited in vivo osteogenic activity in zebrafish skeletal development and mouse calvarial bone formation. The dual action of licochalcone A in stimulating bone formation and inhibiting bone resorption, as described in a previous study, might be beneficial in treating bone-related disorders.  相似文献   

17.
Decreases in bone minerals and tissue volume after space flight have been observed in humans and animals, with a variety of results. Such data obtained from space flight experiments have given unsatisfactory results due to short periods of space flight and differences in age, body weights, and strain of animals used. Therefore, ground-based animal models have been developed in order to elucidate changes in bone affected by space flight. For example, a tail-suspended rat model has been established to study the effects of microgravity on bones by producing hind limb unloading. However, problems with this model due to the remaining forelimb loading and the unusual changes in blood current require the development of a new model simulating the physiological conditions of space flight. So we developed a three-dimension clinostat as an apparatus to produce a simulated microgravity similar to space flight by rotating rats equally in all directions. The purpose of the present study is to examine the effects of clinostat-microgravity on bone metabolism in rats.  相似文献   

18.
Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.  相似文献   

19.
Osteoblast lineage-specific differentiation of mesenchymal stem cells is a well regulated but poorly understood process. Both bone morphogenetic proteins (BMPs) and Wnt signaling are implicated in regulating osteoblast differentiation and bone formation. Here we analyzed the expression profiles of mesenchymal stem cells stimulated with Wnt3A and osteogenic BMPs, and we identified connective tissue growth factor (CTGF) as a potential target of Wnt and BMP signaling. We confirmed the microarray results, and we demonstrated that CTGF was up-regulated at the early stage of BMP-9 and Wnt3A stimulations and that Wnt3A-regulated CTGF expression was beta-catenin-dependent. RNA interference-mediated knockdown of CTGF expression significantly diminished BMP-9-induced, but not Wnt3A-induced, osteogenic differentiation, suggesting that Wnt3A may also regulate osteoblast differentiation in a CTGF-independent fashion. However, constitutive expression of CTGF was shown to inhibit both BMP-9- and Wnt3A-induced osteogenic differentiation. Exogenous expression of CTGF was shown to promote cell migration and recruitment of mesenchymal stem cells. Our findings demonstrate that CTGF is up-regulated by Wnt3A and BMP-9 at the early stage of osteogenic differentiation, which may regulate the proliferation and recruitment of osteoprogenitor cells; however, CTGF is down-regulated as the differentiation potential of committed pre-osteoblasts increases, strongly suggesting that tight regulation of CTGF expression may be essential for normal osteoblast differentiation of mesenchymal stem cells.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号