共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell communication & adhesion》2013,20(1-2):11-20
AbstractGap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology. 相似文献
2.
目的 在HeLa宫颈癌细胞中研究不同浓度的多西环素对缝隙连接蛋白Cx26/Cx32表达及由其形成的缝隙连接通讯功能的影响.方法 采用Western印迹检测HeLa细胞中Cx26/Cx32的蛋白表达;荧光示踪实验用于检测HeLa细胞中由Cx26/Cx32形成的缝隙连接通讯功能.结果 Western印迹结果显示多西环素在0.01~1 μg/ml的范围内,随着剂量的增加,Cx26/Cx32蛋白表达水平增加;荧光示踪实验结果显示HeLa细胞之间的荧光传递随着多西环素增加也相应增强.结论 采用加入不同浓度多西环素的方法,可制备缝隙连接通讯功能强弱不同的细胞模型. 相似文献
3.
N. Belluardo T. W. White M. Srinivas A. Trovato-Salinaro H. Ripps G. Mud R. Bruzzone D. F. Condorelli 《Cell communication & adhesion》2001,8(4):173-178
By combining in silico and bench molecular biology methods we have identified a novel human gap junction gene that encodes a protein designated HCx31.9. We have determined its human chromosomal location and gene structure, and we have identified a putative mouse ortholog, mCx30.2. We have observed the presence of HCx31.9 in human cerebral cortex, liver, heart, spleen, lung, and kidney and the presence of mCx30.2 in mouse cerebral cortex, liver and lung. Moreover, preliminary data on the electrophysiological properties of HCx31.9 have been obtained by functional expression in paired Xenopus oocytes and in transfected N2A cells. 相似文献
4.
《Cell communication & adhesion》2013,20(4-6):179-185
The pore-lining residues of gap junction channels determine their permeability to ions and small cellular metabolites. These residues can be identified through systematic cysteine substitution and accessibility analysis, commonly known as SCAM (Substituted Cysteine Accessibility Method). However, application of this technique to intercellular channels is more complicated than for their transmembrane counterparts. We have utilized a novel dual-oocyte perfusion device to apply cysteine reagents to the cytoplasmic face of paired, voltage-clamped Xenopus oocytes. In this configuration, a large and irreversible cysteine reagent MBB (maliemidobutyryl biocytin, mw 537) was shown to readily traverse the gap junction pore and induce conductance changes upon reaction of accessible sites. Of the 11 reactive sites identified, 6 were located in M3, where they span the bilayer. They display a periodicity characteristic of the tilted helix that lines the pore in the gap junction structure of Unger et al. (1999). Access to several of the other sites was attributed to aqueous crevices between transmembrane helices. Reactive sites were slightly different than those identified for gap junction hemichannels (Zhou et al. 1997), suggesting that conformational changes occur upon docking. 相似文献
5.
Patricia E. M. Martin Rachel J. Errington W. Howard Evans 《Cell communication & adhesion》2001,8(4):243-248
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling. 相似文献
6.
《Cell communication & adhesion》2013,20(4-6):243-248
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling. 相似文献
7.
连接子蛋43(connexin 43,Cx43)是骨组织中主要的间隙连接(gap junction)蛋白和半通道(hemichannel)蛋白,由Cx43形成的间隙连接及半通道实现了骨组织细胞间的直接通讯。连接子蛋白对骨组织的正常发育、骨重建过程的建立与平衡是非常重要的。目前研究指出,Cx43不仅参与了骨组织的力学响应过程,也参与了二磷酸盐、甲状旁腺激素等药物对骨重建的调节过程。该文以骨组织细胞内信号传递途径的关键分子Cx43为对象,就其目前的研究现状作一综述。 相似文献
8.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1. 相似文献
9.
《Cell communication & adhesion》2013,20(4-6):211-214
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1. 相似文献
10.
Dual Functions for Connexins: Cx43 Regulates Growth Independently of Gap Junction Formation 总被引:7,自引:0,他引:7
Connexins, the family of proteins that form vertebrate gap junctions, have key roles during development and in the adult. Previously, the physiological actions of connexins have been ascribed solely to formation of gap junction channels and thought to be mediated by the transfer of small molecules between neighboring cells. In conflict with this hypothesis here we demonstrate that Cx43 can affect cell growth independently of gap junction formation. This conclusion is based on four findings: (1) There is a lack of correlation between the action of Cx43 mutants Cx43-S255A, Cx43-S279A, and Cx43-S282A on growth and cell coupling in 3T3 A31 fibroblasts. (2) Blockade of gap junction formation, by either heptan-1-ol treatment or culturing cells at low density, had no effect on the ability of the Cx43 mutants to control growth. (3) Wildtype Cx43 inhibited growth of Neuro2a cells under conditions where gap junctions were unable to form. (4) The CT domain of Cx43, which lacks intrinsic gap junction activity, is as effective as the wildtype molecule in suppressing the growth of Neuro2a cells. These observations demonstrate that Cx43 has dual functions: first, its well-accepted role in forming a gap junction channel and, second, a direct action of the connexin protein on growth that is mediated via the cytoplasmic carboxyl domain. 相似文献
11.
《Cell communication & adhesion》2013,20(5):367-375
Gap junction intercellular communication (GJIC) consists of intercellular exchange of low molecular weight molecules. Chemically induced alterations of this communication have been suggested to result in abnormal cell growth and tumour promotion. Several in vitro assays have been developed to determine the effect of chemicals on gap junction communication in cultured cells. The scrape loading dye transfer technique is based on studying the transfer of the fluorescent dye Lucifer Yellow in cells where the dye is loaded through a cut in the cell monolayer. This technique is rapid and relatively uncomplicated, but has only been used to qualitatively demonstrate communication, due to lack of an appropriate method for quantification of the dye spreading. We show here that analysis of digital fluorescence images of cells scrape loaded with Lucifer Yellow can be used for quantitative determination of GJIC. We have analysed the images both by means of distance of diffusion of the dye in the cell monolayer, as well as by area of dye-coupled cells. The results are consistent with that obtained using microinjection of Lucifer Yellow and the method offers a simple way for quantitative determination of GJIC. 相似文献
12.
《Cell communication & adhesion》2013,20(4-6):345-348
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction. 相似文献
13.
《Cell communication & adhesion》2013,20(4-6):287-291
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gjand γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gjin Cx40/Cx40 pairs, but decreased gjin the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gjsuggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gjinvolved a decrease in both γjand Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins. 相似文献
14.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gj and γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gj in Cx40/Cx40 pairs, but decreased gj in the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gj suggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gj involved a decrease in both γj and Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins. 相似文献
15.
This synopsis covers the main results and conclusions from the platform presentations during the International Gap Junction Conference. More detailed information is provided in the mini reviews on controversial scientific issues, short reports of research results and conference abstracts published in this issue of Cell Communication and Adhesion. 相似文献
16.
《Cell communication & adhesion》2013,20(4-6):349-353
The ocular lens is an ideal model system for studying gap junction structure-function relationships. Here we apply novel methods to quantitatively compare connexin expression over macroscopic distances while simultaneously resolving the intracellular distribution of gap junctions in sub-micron detail. Our approach has identified three distinct zones of connexin density and allowed changes in gap junction plaque size, number and dispersion to be quantified. Our analysis is the first to precisely correlate changes in gap junction plaque structure with the reported changes in gap junction function that occur as a consequence of fiber cell differentiation. 相似文献
17.
18.
19.
《Cell communication & adhesion》2013,20(6):501-512
Gap junction intercellular communication (GJIC) is involved in several aspects of normal cell behaviour, and disturbances in this type of communication have been associated with many pathological conditions. Reliable and accurate methods for the determination of GJIC are therefore important in studies of cell biology. (Tomasetto, C., Neveu, M.J., Daley, J., Horan, P.K. and Sager, R.(1993) Journal of Cell Biology, 122, 157–167) reported some years ago the use of flow cytometer to determine transfer between cells of a mobile dye, calcein, as a measure of cell communication through gap junctions. In spite of this being a method with potential for quantitative and reliable determination of GJIC, it has been modestly used, possibly due to technical difficulties. In the present work we have illustrated several ways to use flow cytometric data to express cell communication through gap junctions. The recipient cells were pre-stained with the permanent lipophilic dye PKH26, and the donor cell population were loaded with the gap junction permeable dye, calcein. We show that the method may be used to measure the effect of chemicals on GJIC, and that the information is reliable, objective and reproducible due to the large number of cells studied. The data may give additional information to that obtained with other methods, since the effect observed will be on the establishment of cell communication as compared to what is observed for microinjection or scrape loading, where the effect is on already established communication. This is probably the reason for the more potent effects of DMSO on GJIC measured by the present method than on already existing GJIC measured by microinjection or quantitative scrape loading. We also show that the problem related to the mobile dye calcein not being fixable with aldehydes will not affect the results as long as the cells are kept on ice in the dark and analysed by flow cytometer within the first hours after formalin cell fixation. 相似文献
20.
Randy F. Stout Jr. Erik Lee Snapp David C. Spray 《The Journal of biological chemistry》2015,290(39):23497-23514
Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes. 相似文献