首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

2.
The transformed root culture of Polygonum tinctorium Lour. was established by infecting leaf explants with Agrobacterium rhizogenes A4. These cultures were examined for their growth and indigo content under various culture conditions. Among the four different culture media tested, SH medium showed the highest yield for root growth (28 mg dry wt/30 ml) and indigo production (152 g/dry wt). In SH medium, 30 g sucrose l–1, 2500 mg KNO3 l–1, 300 mg NH4H2PO4 l–1 were the best conditions for indigo production at pH 5.7. The production of indigo in hairy roots slightly increased with the addition of 200 mg chitosan l–1 (186 g/dry wt) and 20 U pectinase l–1 (181 g/dry wt).  相似文献   

3.
With an autotrophic, N-free medium, Xanthobacter populations were isolated from the roots of wetland rice grown under field conditions. Xanthobacter populations ranged from 3.2×104 to 5.1×105 colony-forming units (cfu) g-1 of root and averaged 47-fold higher on the root or rhizoplane than in the neighbouring nonrhizosphere. Characterization studies indicated dissimilarities in carbon utilization and motility among the isolated Xanthobacter strains and other recognized Xanthobacter species. Under gnotobiotic conditions, the population of one isolate, Xanthobacter sp. JW-KR1, increased from 105 to 107 cfu plant-1 1 d after inoculation when a rice plant was present, but declined to numbers below the limit of detection (<104 cfu assembly-1) after 3 d in the absence of a plant. Scanning electron microscopy revealed Xanthobacter as pleomorphic forms on the rhizoplane. To assess the effect of Xanthobacter on plant growth, rice plants were grown under greenhouse conditions in plant assemblies containing sand and half-strength Hoagland's nutrient solution with and without nitrogen. Plants were either inoculated with 105 cfu Xanthobacter g-1 of sand or left uninoculated. After 40 d, plants without nitrogen showed no significant differences in top or root dry weight, plant height, root length, or number of tillers or leaves, whether the plants were inoculated or uninoculated. However, when nitrogen was added, inoculated plants had a significantly larger top dry weight (15%) and number of leaves (19%) than uninoculated plants. Under conditions of added and no added nitrogen, acetylene reduction assays showed Xanthobacter sp. JW-KR1 produced <0.1 (below detection limit) and 7 nmol C2H4 plant-1 h-1, respectively. Under the conditions studied, the results suggest that both Xanthobacter and wetland rice derive some benefits from their association.  相似文献   

4.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

5.
A number of plants were tested for their ability to bind ethylene and the number of binding sites present in each was calculated. Primary leaves of laboratory-grown beans (Phaseolus vulgaris) bound 140 dpm/g fwt (1794 dpm/g dry wt) when exposed to 1.0 Ci/1 of [14C]ethylene (110 ci/mol). Phytotron-grown leaves were less succulent but only bound 90 dpm/g fwt (1046 dpm/g dry wt). Bean roots bound 30 dpm/g fwt. Citrus and Ligustrum bound 207 and 240 dpm/g fwt, respectively. The time required to achieve equilibrium of leaves with the gas phase was 15 min for bean, 30 min for Citrus, and 30–60 min for Ligustrum. The time for 1/2 of the bound ethylene to diffuse out of the leaves was 20 min for bean, 10 min for Citrus, and 30 min for Ligustrum. The amount of ethylene needed to occupy 1/2 of the binding sites was obtained from Scatchard plots. This value (Kd) was 0.2 l/1 for bean, 0.15 for Citrus, and 0.31 for Ligustrum. The quantity of binding sites in the tissues was 2.0×10-9 mol of binding sites/kg tissue for bean leaves, 5.7×10-9 for Citrus leaves, and 6.8×10-9 for Ligustrum. Pretreatment with indoleacetic acid (IAA), ehtylene, and cycloheximide (1 mg/1) had little effect on the level of ethylene-binding sites in Citrus.Contribution from the Department of Biochemistry, School of Agriculture and Life Sciences and School of Physical and Mathematical Sciences, North Carolina State University. Paper No. 8445 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601.North Carolina-Israel exchange Scholar for 1981 at the Department of Biochemistry, North Carolina State University Raleigh, North Carolina, USA  相似文献   

6.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

7.
Excised root cultures of Gloriosa superba reached 7.5 g dry wt l–1 and accumulated 240±40 g colchicine g–1 cell dry wt after 4 weeks growth. While all precursors (except trans-cinnamic acid) enhanced colchicine content of root cultures without adversely affecting root growth, treatment with p-coumaric acid + tyramine (each at 20 mg l–1) increased colchicine content to 1.9 mg g–1 cell dry wt.  相似文献   

8.
Castillo  J.M.  Casal  A.E. Rubio  Luque  C.J.  Luque  T.  Figueroa  M.E. 《Photosynthetica》2002,40(1):49-56
Chlorophyll a fluorescence, water potential (s), and root system of Juniperus oxycedrus ssp. macrocarpa, Juniperus phoenicea ssp. turbinata, and Pinus pinea were studied in Mediterranean coastal dunes of SW Spain during summer drought and after fall rains in 1999, the driest year in the 90's. A strong and reversible depression in the photochemical efficiency of photosystem 2 of the three species was recorded, which happened concomitantly with the diurnal increase and decrease in radiation. J. phoenicea, with superficial root system, was the most affected species by summer drought. It showed high rates of down-regulation of photosynthesis by photoinhibition and positive correlation between s and Fv/Fp, with s lower than -7 MPa. However, it tolerated this high stress, showing a fast recovery of its physiological state after fall rains. On the other hand, J. oxycedrus and P. pinea, both with deep root systems, kept their s values up to -3 MPa, showing lower stress during summer drought. On the other hand, J. oxycedrus and J. phoenicea were more sensible to changes in edaphic water content than P. pinea. These specific responses to summer drought would be determined by their root distributions and stomatal control of transpiration, conditioning the efficiency in getting and using the available water resources. Ecophysiological responses indicate that these species are well-adapted to long periods of drought in Mediterranean climate areas, developing different strategies: J. phoenicea tolerates high stress with a fast recovery after fall rains, while J. oxycedrus and P. pinea are less affected by summer drought since their deep root systems would allow them to reach deep water resources.  相似文献   

9.
Analysis of Root Growth by Impedance Spectroscopy (EIS)   总被引:1,自引:0,他引:1  
Electrical impedance spectroscopy (EIS) is investigated as a non-destructive method for monitoring root growth of tomato. This paper aims to (i) review the basic principles of EIS applied to the characterisation of the different parts of the soil–root–stem-electrode continuum, (ii) experiment the validity of the relationship between root weight and root capacitance taking into account the influence of the soil and plant electrodes position, (iii) describe an EIS analysis of the root growth of tomato plants. All experiments were carried out in 50 dm3 containers either in hydroponics at 930 μS for the test of root fresh or dry weight and root capacitance relationships, or in a potting mix (oxisol) for electrode placement tests and EIS estimation of root growth. Electrical measurements of the soil–root–stem-electrode continuum were done with a two-electrode measuring system using unpolarisable Ag–AgCl electrodes. A ‘root cutting’ and a ‘progressively immersed root system’ experiments were carried out in order to validate the relationship between root capacitance and root mass at 1 kHz. The effects of soil electrode and plant electrode placement were also tested, pointing out the sensitivity of the method to the insertion height of the “plant electrode” into the stem. For the root growth experiment, Impedance Spectra (IS) measurements were made just before harvesting the roots for dry weight and length determination. Measurements were made 14, 22, 26 and 39 days after planting, until flowering. The IS of the soil–root–stem-electrode continuum was modelled by a lumped electric circuit consisting of a series resistor R 0 for the soil and of four parallel resistance (R i )-capacitance (C i ) circuits for the other components of the circuit. The model had nine parameters whose values were estimated by Complex Nonlinear Least Squares curve fitting. A stepwise ascendant regression was used to identify the electrical parameters that better correlated with root dry mass or length increment: C 3 and C 4 were well correlated with root dry mass with a r 2 of 0.975, whereas root length was explained by the combination of 1/R 3, C 3, 1/R 2 and 1/R 1 with a r 2 of 0.986. This work may be considered as a new methodological contribution to the understanding of root electrical properties in the non-destructive diagnosis of root systems.  相似文献   

10.
The potential of alginate-immobilized Anabaena doliolum and Chlorella vulgaris was assessed for removal of nutrients (NO inf3 sup- and NH inf4 sup+ ) and metals (Cr2O inf7 sup2- and Ni2+) at different biomass concentrations (0.05, 0.1, 0.25, 0.49 and 1.22 g dry wt l-1) and pH values (4 to 10). Though uptake of all these substances was higher in concentrated algal beads (0.25, 0.49 and 1.22 g dry wt l-1), their rate of uptake was significantly (P<0.001) lower than that of low (0.05 g dry wt l-1) cell density beads. For A. doliolum, there was no significant difference in uptake rates for beads having densities of 0.05 and 0.1 g dry wt l-1. Chlorella vulgaris, however, showed maximum efficiency at 0.1 g dry wt l-1. Uptake of both the nutrients and the metals was maximal at pH 7 followed by pH 8, 6, 9, 10, 5 and 4. Of the different substances (organic acids and divalent cations) used, humic acid was most efficient in decreasing metal uptake. Mg2+ was, however, more efficient than Ca2+ in decreasing Ni2+ uptake. Immobilized algae with a cell density of 0.1 g dry wt l-1 were the most efficient for nutrient and metal removal at pH 6 to 8.  相似文献   

11.
以2年生金银花为试验材料,采用叶面喷施法,研究不同浓度的苯丙氨酸(Phe)、酪氨酸(Lyr)以及锌(Zn2+)、铜(Cu2+)对金银花生长发育和质量的影响。结果显示:(1)喷施不同浓度的Phe、Lyr以及Zn2+、Cu2+对叶面积无明显影响;不同处理的叶绿素含量随喷施次数的增加而出现不同程度的下降,喷施浓度适宜则有助于叶绿素的合成;喷施一定浓度的Phe、Lyr以及Zn2+、Cu2+可增加花蕾重量,如经1 000mg/g Phe处理后的花蕾鲜重与干重较对照增加了20.1%和51.4%。(2)不同浓度的Phe、Lyr可显著影响碳代谢,但对氮代谢影响不明显;Zn2+、Cu2+对碳氮代谢产物影响较明显,如喷施10mg/L的CuSO4及ZnSO4可提高可溶性糖及淀粉含量。(3)除Zn2+处理后的花蕾类黄酮含量显著低于对照外,其他处理较CK无显著差异;花蕾总黄酮含量均显著低于对照,但绿原酸含量均高于对照。(4)叶片中离子含量受喷施次数及浓度影响较明显,除30mg/L CuSO4处理外,其它处理的花蕾中Zn2+、Cu2+、Fe2+含量均显著低于对照。研究表明,在金银花的第一茬花抽枝初期喷施适宜浓度的Phe、Lyr(如1 000mg/g Phe、2 000mg/g Lyr)以及Zn2+、Cu2+(如50mg/L ZnSO4、10mg/L CuSO4)可改善金银花的生长发育,并提高产量和质量。  相似文献   

12.
Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when , not , was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.  相似文献   

13.
During and immediately after labelling of soybeans (Glycine max. L.) in the field by exposure to14CO2, its respiratory deposit into the soil atmosphere, and its liberation from the soil were used in conjunction with estimates of below-ground plant biomass to apportion total soil respiration. Root respiration of soybean plants at stage V6 was estimated at 4 mg CO2.(g root)–1.h–1. Soil biota, during the same time, contributed 35% of total soil respiration.Contribution from the Missouri Agricultural Experiment Station. Journal Series Number 10700. Funded in part by USDA Grant SE 83-CRSR-2-2309.  相似文献   

14.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:30,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   

15.
A collection of bacterial strains obtained from a wide-range origin was screened for ability to promote growth in two types of Prunus rootstocks in a commercial nursery. Only few strains promoted growth significantly and consistently, and a strong specificity for the rootstock cultivar was observed. Irrigation of plants with Pseudomonas fluorescens EPS282 and Pantoea agglomerans EPS427 significantly increased plant height and root weight of the plum Marianna 2624 and the peach–almond hybrid GF-677, respectively. Plant height showed a higher rate of growth in early stages of development (2.6–3.5 times the non-treated controls), but the effect decreased with plant age. However, in aged plants growth promotion was more significant on root weight (1.9 times the non-treated controls) than on plant height. The efficacy of growth promotion and the persistence of strains in the root environment were dependent on the bacterial inoculum concentration applied. Increases in root development were maximum at inoculum concentrations of up to 8 log10 CFU ml–1 (ca 10 log10 CFU L–1 of potting mix). Population levels at the optimum inoculum concentration were around 7 log10 CFU g f.w.–1 root material at early stages of development and decreased to 4 log10 CFU g f.w.–1 after several months of development. The best plant growth-promoting strains were very diverse in secondary metabolite production and antagonistic ability against several plant pathogens.  相似文献   

16.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

17.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

18.
Masaoka  Y.  Kojima  M.  Sugihara  S.  Yoshihara  T.  Koshino  M.  Ichihara  A. 《Plant and Soil》1993,155(1):75-78
Alfalfa (Medicago sativa L.) was grown in hydroponic culture to investigate adaptation to Fe-deficiency. Root exudates released into the nutrient solution from Fe-deficient plants were trapped and condensed on an amberlite XAD-4 resin column. The diethyl ether fraction of these exudates dissolved ferric phosphate remarkably. The dissolving capability was about 62 times higher than that of root exudates obtained from Fe-sufficient plants in complete nutrient solution. The Fe-dissolving compound was separated and identified. It was a new natural compound with molecular formula C14H10O5 and was identified as 2-(3,5-dihydroxyphenyl)-5,6-dihydroxybenzofuran by means of mass spectrometry and 1H-nuclear magnetic resonance. This new compound worked as a phytoalexin and inhibited completely the fungal growth of Fusarium oxysporum f. sp. phaseoli.  相似文献   

19.
Summary Drought resistance of wheat (Triticum aestivum L.) as influenced by two vesiculararbuscular mycorrhizal (VAM) fungi,Glomus fasciculatum 10 andGlomus deserticola 19, was evaluated. Soil columns 0.15 m diam. by 1.20 m length were used to reduce the influence of limited rooting space. With initial soil water at 0.5 MPa (0.145 kg kg–1), plants were subjected to low-level water stress throughout the experiment and severe water stress for 24 h at one (55 days after transplanting, Feekes scale 10.1) two (55 and 63 days, Feekes 10.1 and 10.2), or three (55, 63, and 70 days, Feekes 10.1, 10.1, and 10.2) periods. After each stress period, one set of plants was watered and grown to maturity without subsequent water stress. A second set of plants was harvested 1 week after stress.G. fasciculatum-inoculated plants harvested 7 days after stress at 55 days had greater leaf area and leaf, total plant, and root weight than non-VAM plants.G. deserticola-inoculated plants had greater leaf area and leaf weight than non-VAM plants. After stress at 55 and 63 days, leaf area, and leaf and total dry weight were again greater for VAM than for non-VAM plants. However, after stress at 55, 63, and 70 days, differences in aboveground biomass between VAM and non-VAM plants were not significant at P=0.05. Aboveground biomass was not affected by VAM species in plants stressed at 55 or 55 and 63 days, butG. fasciculatum-inoculated plants produced more tillers atter stress at 55 days. When grown to maturity, VAM plants which had undergone three stress periods had twice the biomass and grain yield as non-VAM plants subjected to the same stress. The three stress periods reduced number of heads and kernel numbers of weight of non-VAM plants compared to VAM plants.G. fasciculatum-inoculated plants consistently had increased root weight and rooting depth.Contribution from the Agricultural Research Service, USDA, in cooperation with the Nebr. Agric. Exp. Stn., Univ. Nebr.-Lincoln, Lincoln, Nebr. Published as Paper No. 7571 Journal Series, Nebr. Agric. Exp. Stn.  相似文献   

20.
Ectomycorrhizal fungi (Paxillus involutus, Suillus grevillei and two unidentified basidiomycetes from excised Sitka spruce mycorrhizas) were isolated from stands of Sitka spruce either in monoculture or in a mixture with Japanese larch in an Irish conifer plantation. The growth of these fungi and their mycorrhizal formation in Sitka spruce and Japanese larch were examined after incubation in modified Melin-Norkrans medium containing either KH2PO4, Ca3(PO4)2 or Fe phytate as the phosphorus (P) source. P. involutus and S. grevillei utilized all three P sources. The unidentified basidiomycetes had limited ability to utilize Fe phytate. Basidiomycete 1 showed poor growth on KH2PO4 whereas growth of basidiomycete 2 was low on Ca3(PO4)2. Pure culture synthesis studies confirmed that P. involutus and the two basidiomycetes formed mycorrhizas with both tree species but S. grevillei was mycorrhizal only on Japanese larch. P. involutus formed more mycorrhizas in both conifers than the other fungi. Following inoculation with each of the four fungi, shoot and root dry mass of both Sitka spruce and Japanese larch seedlings was enhanced compared with uninoculated/nonmycorrhizal controls. On Fe phytate, Paxillus-inoculated Sitka spruce seedlings had the lowest primary root length and on KH2PO4, Suillus-inoculated Japanese larch had the greatest number of short roots. The only differences when Sitka spruce seedlings were grown in either monoculture or in a mixture with Japanese larch mycorrhizal with S. grevillei were primary root length and number of short roots after growth on media containing Fe phytate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号