首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in cytosolic free calcium [Ca2+]i and release of beta-glucuronidase in response to leukotriene B4 (LTB4) were measured in intact neutrophils loaded with the fluorescent Ca2+ indicator, quin 2. LTB4 (10(-10) M or higher) caused a rapid rise in [Ca2+]i due to influx from the extracellular medium and release from intracellular pools as well as enzyme release. PGE2 (3 microM) did not alter [Ca2+]i whereas arachidonic acid (10 microM) raised [Ca2+]i. Pretreatment of cells with the chemotactic peptide FMLP inhibited the subsequent rise of [Ca2+]i induced by LTB4. Since chemotactic peptides activate the lipoxygenase pathway of arachidonic acid metabolism, it may be speculated that endogenous LTB4 generation is involved in neutrophil activation.  相似文献   

2.
Mast cells are implicated in the pathogenesis of a broad spectrum of immunological disorders. These cells release inflammatory mediators in response to a number of stimuli, including IgE-Ag complexes. The degranulation of mast cells is modified by PGs. To begin to delineate the pathway(s) used by PGs to regulate mast cell function, we examined bone marrow-derived mast cells (BMMC) cultured from mice deficient in the EP(1), EP(2), EP(3), and EP(4) receptors for PGE(2). Although BMMCs express all four of these PGE(2) receptors, potentiation of Ag-stimulated degranulation and IL-6 cytokine production by PGE(2) is dependent on the EP(3) receptor. Consistent with the coupling of this receptor to G(alphai), PGE(2) activation of the EP(3) receptor leads to both inhibition of adenylate cyclase and increased intracellular Ca(2+). The magnitude of increase in intracellular Ca(2+) induced by EP(3) activation is similar to that observed after activation of cells with IgE and Ag. Although PGE alone is not sufficient to initiate BMMC degranulation, stimulation of cells with PGE along with PMA induces degranulation. These actions are mediated by the EP(3) receptor through signals involving Ca(2+) mobilization and/or decreased cAMP levels. Accordingly, these studies identify PGE(2)/EP(3) as a proinflammatory signaling pathway that promotes mast cell activation.  相似文献   

3.
In the presence of ouabain, prostaglandin (PG) E2 stimulated a gradual secretion of catecholamines from cultured bovine adrenal chromaffin cells. PGE2 or ouabain alone evoked a marginal secretory response. The synergism of ouabain was also observed with muscarine. PGE2, like muscarine, induced a concentration-dependent formation of inositol phosphates: rapid rises in inositol trisphosphate and inositol bisphosphate followed by a slower accumulation of inositol monophosphate. This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. The potency of PGs (PGE2 greater than PGF2 alpha greater than PGD2) to stimulate catecholamine release was well correlated with that to affect phosphoinositide metabolism and that to increase the level of intracellular Ca2+. PGE2 did not stimulate cAMP generation significantly in bovine chromaffin cells. The effect of PGE2 on catecholamine release was mimicked by 12-O-tetradecanoylphorbol 13-acetate and A23187, but not by the cAMP analogue dibutyryl cAMP nor by forskolin. These results indicate that PGE2 may enhance catecholamine release from chromaffin cells by activating protein kinase C in concert with the increment of intracellular Ca2+.  相似文献   

4.
The effects of arachidonic acid metabolites on mitogen-induced interferon (IFN)-gamma production by human peripheral blood mononuclear cells (PBMC) were examined. Both prostaglandins E2 (PGE2) and leukotrienes B4 (LTB4) were produced after macrophage activation stimulated by galactose oxidase (GO) and Staphylococcal enterotoxin B (SEB), two well known inducers of IFN-gamma. To test the involvement of PGE2 and LTB4 in IFN-gamma production, GO- and SEB-activated PBMC were treated with two inhibitors of cyclooxygenase (aspirin and indomethacin) and with an inhibitor of lipoxygenase [nordihydroguaiaretic acid (NDGA)]. The results of these experiments showed that aspirin and indomethacin cause a marked increase of IFN-gamma production by GO- and SEB-activated PBMC. On the contrary, NDGA treatment reduced IFN-gamma production induced by the same agents. Moreover, whereas the addition of exogenous PGE2 reduces IFN gamma production, the addition of exogenous LTB4 does not affect IFN-gamma production. Taken together these findings indicate that arachidonic acid metabolites, produced during mitogenic activation, are involved in the regulation of IFN-gamma production and suggest that, in our system, LTB4 exerts a positive modulating signal while PGE2 represents a negative signal.  相似文献   

5.
PGs produced from arachidonic acid by the action of cyclooxygenase enzymes play a pivotal role in the regulation of both inflammatory and immune responses. Because leukotriene B4 (LTB4), a product of 5-lipoxygenase (5-LO) pathway, can exert numerous immunoregulatory and proinflammatory activities, we examined the effects of PGs on LTB4 release from dendritic cells (DC) and from peritoneal macrophages. In concentration-dependent manner, PGE1 and PGE2 inhibited the production of LTB4 from DC, but not from peritoneal macrophage, with an IC50 of 0.04 microM. The same effect was observed with MK-886, a 5-LO-activating protein (FLAP)-specific inhibitor. The decreased release of LTB4 was associated with an enhanced level of IL-10. Furthermore, the inhibition of LTB4 synthesis by PGs was significantly reversed by anti-IL-10, suggesting the involvement of an IL-10-dependent mechanism. Hence, we examined the effects of exogenous IL-10 on the 5-LO pathway. We demonstrate that IL-10 suppresses the production of LTB4 from DC by inhibiting FLAP protein expression without any effect on 5-LO and cytosolic phospholipase A2. Taken together, our results suggest links between DC cyclooxygenase and 5-LO pathways during the inflammatory response, and FLAP is a key target for the PG-induced IL-10-suppressive effects.  相似文献   

6.
We recently reported that prostaglandin (PG) E2 stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain induced a gradual secretion of catecholamines from the cells (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). Here we examined the involvement of two signal pathways, Ca2+ mobilization and protein kinase C activation resulting from phosphoinositide metabolism, in the PGE2-induced catecholamine release. Either the Ca2+ ionophore ionomycin or 12-O-tetradecanoylphorbol 13-acetate (TPA) could enhance the release in the presence of ouabain, and ionomycin-induced release was additive to PGE2-induced release, but TPA-induced release was not additive. PGE2 dose-dependently stimulated the formation of diacylglycerol and caused the translocation of 4% of the total protein kinase C activity to become membrane-bound within 5 min. These effects were specific for PGE2 and PGE1 among PGs tested (PGE2 = PGE1 greater than PGF2 alpha greater than PGD2). Furthermore, the phosphoinositide-specific phospholipase C inhibitor neomycin inhibited PGE2-induced accumulation of inositol phosphates, diacylglycerol formation, translocation of protein kinase C, and also stimulation of catecholamine release. Both PGE2- and TPA-induced release were inhibited by the depletion of protein kinase C caused by prolonged exposure to TPA, but ionomycin-induced release was not inhibited. We recently found that the amiloride-sensitive Na+, H+-antiport participates in PGE2-evoked catecholamine release (Tanaka, T., Yokohama, H., Negishi, M., Hayashi, H., Ito, S., and Hayaishi, O. (1990) J. Neurochem. 54, 86-95). In agreement with our recent report, PGE2 and TPA induced a sustained increase in intracellular pH that was abolished by the protein kinase C inhibitor staurosporine but not by the calmodulin inhibitor W-7. Ionomycin also induced a marked increase in intracellular pH, but this increase was abolished by W-7 but not by staurosporine. These results demonstrate that PGE2-induced activation of the Na+, H(+)-antiport and catecholamine release in the presence of ouabain are mediated by activation of protein kinase C, rather than by Ca2+ mobilization, resulting from phosphoinositide metabolism.  相似文献   

7.
Preexposure of resident mouse peritoneal macrophages for 1 hr to traces of bacterial lipopolysaccharide (LPS) (less than or equal to 1 ng/ml) rendered the cells refractory to activation by recombinant interferon-gamma (rIFN gamma) or recombinant tumor necrosis factor-alpha (rTNF alpha), as evaluated by release of H2O2 upon stimulation with phorbol myristate acetate. Inhibition persisted for at least 4 days. Fifty percent inhibition of activation mediated by rIFN gamma followed 1 hr exposure to 10 pg/ml LPS. Fifty percent inhibition of activation mediated by rTNF alpha was achieved with 1 hr exposure to 1 pg/ml LPS. Such low levels LPS exposures (concentration X time) are far below those reported for many other actions of LPS on host cells. Inhibition was partially prevented by the cyclooxygenase inhibitors indomethacin, ibuprofen, and acetylsalicylic acid. Exogenous prostaglandins PGE1 and PGE2, and the 3',5'-cyclic adenosine monophosphate analog dibutyryl cyclic adenosine monophosphate (cAMP), mimicked the inhibitory effect of LPS in a dose-dependent manner, consistent with the hypothesis that formation of endogenous cyclooxygenase products in response to LPS may elevate intracellular cAMP and that the latter may mediate the observed inhibition. In addition, neutralizing antibody against IFN alpha and IFN beta selectively prevented LPS inhibition of activation mediated by rIFN gamma, but not by rTNF alpha. This suggests that IFN alpha and/or IFN beta induced by LPS also contributed to inhibition of activation by rIFN gamma. Thus, release of LPS may afford microorganisms a means by which to interfere with immunologically mediated enhancement of the respiratory burst-dependent antimicrobial capacity of macrophages.  相似文献   

8.
We have examined the nature of the leukotriene B4 (LTB4) induced steady state intracellular calcium rise [Ca++]i in guinea pig eosinophils and the relationship between LTB4 induced [Ca++]i and superoxide anion (O2-). LTB4 induced a rise in intracellular Ca++ (following a Ca(++)- transient) in a dose dependent manner with an optimal increase around 50-100 nM. Depolarizing concentrations of K+ did not induce [Ca++]i in eosinophils nor did the voltage operated calcium channel inhibitor, nifedipine, inhibit the LTB4 induced Ca++ entry. In contrast, SK&F 96365 a purported receptor operated calcium channel (ROCC) inhibitor, and its parent compound SC 32849, attenuated LTB4 induced [Ca++]i. Five reference anti-asthmatics (ketotifen, formoterol, disodium-cromoglycate, theophylline and budesonide) had no influence on LTB4 induced [Ca++]i. LTB4 also induced O2- generation (a functional response) in a dose dependent manner with optimal effect around 100 nM. However, in contrast to Ca(++)- influx, LTB4 induced O2- generation was not affected by either SK&F 96365 or its analogues or reference anti-asthmatics. The results of this study suggest a) the presence of a non-voltage gated, receptor operated, calcium sequestration process in guinea pig eosinophils, b) that LTB4 induced [Ca++]i and O2- generation are apparently unrelated events in these cells, and c) that standard anti-asthmatics do not have an influence on either LTB4 induced [Ca++]i or O2- generation in these cells.  相似文献   

9.
The effects of prostaglandins (PGs) E1 (PGE1), E2 (PGE2) and F2 alpha (PGF2 alpha) on cyclic 3',5'-adenosine monophosphate (cAMP) production and intracellular Ca mobilization were examined in smooth muscle cells of chicken uterus grown in primary culture. At subnanomolar concentrations, both PGE1 and PGE2 significantly suppressed cAMP levels. However, at higher concentrations (0.1-100 microM), both agonists caused a dose-related increase in cAMP production. PGF2 alpha, on the other hand, had no effect on cAMP production. Forskolin (1-100 microM), which also stimulated cAMP production in a dose-dependent fashion, potentiated the effects of both PGE1 and PGE2. In digitonin-permeabilized uterine cells preloaded with 45Ca2+, the addition of PGF2 alpha caused a biphasic 45Ca2+ efflux. There was a small but significant 45Ca2+ release (10.0 +/- 1.5%) within 30 s (rapid phase), followed by a larger one (32.0 +/- 2.0%) within 5 min (slow phase). PGE2, at doses above 1 nM (which significantly increased cAMP accumulation), promoted 45Ca2+ sequestration. This action of PGE2 was observed as early as 1 min and was complete by 5 min. In addition, 0.001 nM PGE2 (a dose that was ineffective on 45Ca2+ mobilization) enhanced PGF2 alpha-induced 45Ca2+ mobilization from 22.5 +/- 5% to 57.0 +/- 3.5%. These results show that PGs of the E series have distinctly different effects on cAMP production and intracellular Ca mobilization. PGF2 alpha action may be linked directly to intracellular Ca mobilization, whereas the effects of PGE may be exerted at multiple sites depending on its local concentration. At low concentrations, its action may be mediated by the suppression of cAMP levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

11.
The effect of prostaglandins (PG) A1, E1, E2 and F2 alpha in the concentration range of 10(-7)--10(-4) M were studied in vitro on a rat hypothalamic tissue, collagenase-digested isolated anterior pituitary cell and Leydig cell suspension system by measuring the testosterone production of incubated Leydig cells. PGs did not change the testosterone production and the hCG sensitivity of the Leydig cells, nor the LH secretion and the LHRH sensitivity of the anterior pituitary cells. PGE2 at concentrations of 10(-6), 10(-5) and 10(-4) M significantly increased the hypothalamic tissue-induced pituitary-testicular activation, and this stimulatory effect of PGE2 was dose dependent. PGA1, PGE1 and PGF2 alpha did not alter hypothalamic LHRH release measured in vitro. The results suggest that PGE2 has a direct stimulatory effect on hypothalamic LHRH release.  相似文献   

12.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

13.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

14.
Human monocytes obtained by counter-current centrifugal elutriation released arachidonic acid when challenged in vitro with Con A, as well as with other soluble (PMA or ionomycin) or particulate stimuli (serum-treated zymosan). Cyclo-oxygenase metabolites were the principal eicosanoids detected in the supernatants of Con A-stimulated, [3H]arachidonate-labeled monocytes, 5-Lipoxygenase (5-LO) products, such as leukotriene B4 (LTB4), were conspicuously absent. Release of arachidonate and its metabolites in response to Con A was dependent on the presence of extracellular Ca2+, but not Mg2+. In contrast to serum-treated zymosan challenge, which resulted in increased inositol trisphosphate and LTB4 release, Con A-induced inositol phospholipid hydrolysis in monocytes was limited to phosphatidylinositol or phosphatidylinositol monophosphate. Despite an inability to augment LTB4 release, Con A or PMA induced a loss of 5-lipoxygenase from a cytosolic compartment that was similar to that achieved with a calcium ionophore (ionomycin), a potent stimulus for LTB4 generation. When cell-associated LTB4 was evaluated, evidence for increased LTB4 production was obtained in response to either stimulus (PMA greater than Con A). In combination, however, PMA and Con A treatment resulted in monocyte LTB4 release comparable with that observed with the calcium ionophore or STZ. LTB4 release in response to all stimuli tested was inhibited by MK-886, a drug that binds to 5-lipoxygenase-activating protein. These results indicate the following: 1) Phospholipase A2 activation and attendant arachidonic acid release induced by agents that increase intracellular Ca2+ and/or generate diacylglycerol results in increased synthesis and release of PG and increased synthesis of leukotrienes, but not necessarily leukotriene release. 2) 5-LO translocation, which may occur independently of increased intracellular Ca2+, may be necessary for LTB4 generation but is insufficient for its release. 3) 5-Lipoxygenase-activating protein activity is necessary for 5-LO activation and LTB4 release in response to all stimuli investigated here. 4) Phorbol ester, an activator of protein kinase C, may synergize with agents such as Con A (which by themselves induce a minimal intracellular Ca2+ rise), so as to result in the release of LTB4. Thus, Con A may represent a class of surface receptor-aggregating agents that initiates inflammatory changes or immunomodulation associated with liberation of PG and might predispose to release of other inflammatory mediators, such as leukotrienes, in the presence of additional signals including protein kinase activation.  相似文献   

15.
Review: Toxoplasma gondii cellular invasion.   总被引:2,自引:0,他引:2  
Toxoplasma gondii, the etiologic agent of toxoplasmosis, is a ubiquitous protozoan parasite that requires an intracellular site for growth and replication. The invasive process involves six steps: a) cellular recognition, b) parasite movements by means of a subpellicular microtubule cytoskeleton, c) cell to cell adhesion, d) rhoptry secretion of penetrating enhancing factor (PEF) with Ca++ and Ca++ activated ATPase dependence, e) conoid penetration, f) induction of a parasitophorous vacuole, a protective and exchange site, interiorization of the parasite. The invasion is an active, oriented and specific process depending on chemical factors as energy sources, cations, as well as microviscosity and membrane structures. Toxoplasma gondii stimulates T cell subsets and induces lymphokine (IFN gamma, IL2) release.  相似文献   

16.
Recently, glycine has been shown to prevent liver injury after endotoxin treatment in vivo. We demonstrated that ethanol and endotoxin stimulated Kupffer cells to release PGE(2), which elevated oxygen consumption in parenchymal cells. Because glycine has been reported to protect renal tubular cells, isolated hepatocytes, and perfused livers against hypoxic injury, the purpose of this study was to determine whether glycine prevents increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in hepatic parenchymal cells by agonists released during stress, such as with PGE(2) and adrenergic hormones. Liver parenchymal cells isolated from female Sprague-Dawley rats were cultured for 4 h in DMEM/F12 medium, and [Ca(2+)](i) in individual cells was assessed fluorometrically using the fluorescent calcium indicator fura 2. PGE(2) caused a dose-dependent increase in [Ca(2+)](i) from basal values of 130 +/- 10 to maximal levels of 434 +/- 55 nM. EGTA partially prevented this increase, indicating that either extracellular calcium or agonist binding is Ca(2+) dependent. 8-(Diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an agent that prevents the release of Ca(2+) from intracellular stores, also partially blocked the increase in [Ca(2+)](i) caused by PGE(2), suggesting that intracellular Ca(2+) pools are involved. Together, these results are consistent with the hypothesis that both the intracellular and extracellular Ca(2+) pools are involved in the increase in [Ca(2+)](i) caused by PGE(2). Interestingly, glycine, which activates anion (i.e., chloride) channels, blocked the increase in [Ca(2+)](i) due to PGE(2) in a dose-dependent manner. Low-dose strychnine, an antagonist of glycine-gated chloride channel in the central nervous system, partially reversed the inhibition by glycine. When extracellular Cl(-) was omitted, glycine was much less effective in preventing the increase in [Ca(2+)](i) due to PGE(2). Phenylephrine, an alpha(1)-type adrenergic receptor agonist, also increased [Ca(2+)](i), as expected, from 159 +/- 20 to 432 +/- 43 nM. Glycine also blocked the increase in [Ca(2+)](i) due to phenylephrine, and the effect was also reversed by low-dose strychnine. Together, these data indicate that glycine rapidly blocks the increase in [Ca(2+)](i) in hepatic parenchymal cells due to agonists released during stress, most likely by actions on a glycine-sensitive anion channel and that this may be a major aspect of glycine-induced hepatoprotection.  相似文献   

17.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

18.
The effects of prostaglandins (PGs) on the induction of alkaline phosphatase (ALP) were investigated in osteoblastic clone MC3T3-E1 cells cultured in serum-free medium. Prostaglandin E2 (PGE2) stimulated ALP activity in the cells in a dose-dependent fashion with a maximal effect which was about twice that in the control cells at concentrations of 100-500 ng/ml. Actinomycin D and cycloheximide inhibited the stimulative effect of PGE2 on ALP activity in the cells. PGE2-induced and native ALPs in the cells were of the same type as that in adult mouse calvaria, being heat-labile, L-homoarginine- and levamisole-sensitive, and L-phenylalanine-insensitive. Isobutyl methylxanthine (IBMX), a cAMP phosphodiesterase inhibitor, stimulated the inductive effect of PGE2 on ALP activity at 0.1 mM, at which concentration IBMX alone had little effect on the activity. PGE2 also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 100 ng/ml. PGE1, PGF1 alpha, and PGF2 alpha (primary PGs like PGE2) increased the activity. Our present results suggest that PGs stimulate the differentiation of osteoblasts and are involved in bone formation in vivo, as well as in bone resorption.  相似文献   

19.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

20.
Prostaglandins (PGs) of the E series are recognized by specific receptors on T lymphocytes which lead to an increase in cAMP. The role of cAMP in modulation of T lymphocyte function is unknown. Here, we demonstrate that agents which increase cAMP in human T cells raise the intracellular free calcium concentration ([Ca2+]i). This increase in [Ca2+]i occurred following receptor stimulation with PGEs or by bypassing the receptor with the cell-permeant analog 8-(4-chlorophenylthio)-cAMP or forskolin, a direct activator of adenylyl cyclase. The calcium response to a submaximally stimulatory concentration of PGE2 was potentiated by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine. A time course of cAMP production in response to PGE2 stimulation closely resembled the calcium response and suggested that the two events were coincident. The PGE2 concentrations required to achieve 50% maximum effect of cAMP production and increases in [Ca2+]i were similar, 0.07 and 0.15 microM respectively. Chelation of extracellular Ca2+ did not abolish the PGE2-stimulated Ca2+ response, suggesting that an intracellular source of calcium was sensitive to cAMP. Significant inositol phosphate production was not detected in response to PGE2 over a wide concentration range. The PGE2-induced calcium response curves were of lesser magnitude with shorter times to peak than those of a known inositol 1,4,5 trisphosphate-producing agonist, anti-CD3, suggesting distinct Ca2+ release mechanisms. However, the cAMP-releasable store appeared to be contained within the inositol trisphosphate-releasable store since no response could be seen with cAMP-elevating agents following emptying of the inositol trisphosphate-sensitive pool of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号