首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we evaluated UCN-01, a small molecule that inhibits protein kinases by interacting with the ATP-binding site, as a potential anti-cancer agent for neuroblastoma. UCN-01 was effective at inducing apoptosis in six neuroblastoma cell lines with diverse cellular and genetic phenotypes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) assays, detection of active caspase-3 and cleaved poly ADP-ribose polymerase (PARP) confirmed that UCN-01 induced apoptosis. Cell cycle analysis determined that the UCN-01 treated cells accumulated in S phase by 16 h. Unlike vinblastine and docetaxel that increased survivin expression, UCN-01 treatment did not increase X-linked inhibitor of apoptosis protein (XIAP) and survivin levels. Analysis of specific phosphoepitopes on chk1/2, Akt, and GSK3beta following UCN-01 treatment determined that there was no significant change in phospho-chk1/2. However, there was decreased immunoreactivity at Ser473 and Thr308 of Akt and Ser9 of GSK3beta by 4 h indicating that the Akt survival pathway and downstream signalling was compromised. Thus, UCN-01 was effective at inducing apoptosis in neuroblastoma cell lines.  相似文献   

2.
3.
Transglutaminase 1 (TG1) is an enzyme that is expressed at the late stage of terminal differentiation of keratinocytes and catalyzes the epsilon-(gamma-glutamyl)lysine cross-linking reaction to form a highly insoluble cell envelope. To elucidate the mechanism of TG1 gene expression in keratinocytes, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), dexamethasone, 1,25-dihydroxyvitamin D3, and retinoic acid on the levels of TG1 mRNA in cultured normal human epidermal keratinocytes (NHEK). Treatment of NHEK with TPA, up to 10 nM, markedly increased the levels of TG1 mRNA in a dose-dependent manner. The effect by treatment with 1 nM TPA reached a peak after 16 h of incubation (20-fold above the basal level). In contrast, phorbol had no effect on TG1 gene expression. The induction of TG1 mRNA expression by TPA was inhibited by 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7) and staurosporine. Dexamethasone at a concentration of 1 microM also increased the TG1 mRNA levels, but the maximum induction was observed (3-fold above the basal level) after 72 h of incubation. The effect of dexamethasone was not suppressed by H-7. Moreover, 1 microM of retinoic acid completely inhibited the induction of TG1 mRNA by both TPA and dexamethasone. 1,25-Dihydroxyvitamin D3 showed no effect on the TG1 mRNA levels. From these results, we suggest that the expression of TG1 gene may be upregulated by protein kinase C and glucocorticoid receptor systems and down-regulated by the retinoic acid receptor system.  相似文献   

4.
7-Hydroxystaurosporine (UCN-01) is a protein kinase inhibitor anticancer drug currently undergoing a phase II clinical trial. The low distribution volumes and systemic clearance of UCN-01 in human patients have been found to be caused in part by its extraordinarily high affinity binding to human alpha1-acid glycoprotein (hAGP). In the present study, we photolabeled hAGP with [3H]UCN-01 without further chemical modification. The photolabeling specificity of [3H]UCN-01 was confirmed by findings in which other hAGP binding ligands inhibited formation of covalent bonds between hAGP and [3H]UCN-01. The amino acid sequence of the photolabeled peptide was concluded to be SDVVYTDXK, corresponding to residues Ser-153 to Lys-161 of hAGP. No PTH derivatives were detected at the 8th cycle, which corresponded to the 160th Trp residue. This strongly implies that Trp-160 was photolabeled by [3H]UCN-01. Three recombinant hAGP mutants (W25A, W122A, and W160A) and wild-type recombinant hAGP were photolabeled by [3H]UCN-01. Only mutant W160A showed a marked decrease in the extent of photoincorporation. These results strongly suggest that Trp-160 plays a prominent role in the high affinity binding of [3H]UCN-01 to hAGP. A docking model of UCN-01 and hAGP around Trp-160 provided further details of the binding site topology.  相似文献   

5.
Interactions between the protein kinase inhibitor UCN-01 and the PKC activator phorbol ester (PMA) have been examined in relation to differentiation and apoptosis in human myelomonocytic leukemia cells (U937). Coadministratation of 100 nM UCN-01 with a low concentration of PMA e.g., 2 nM, inhibited rather than promoted differentiation, reflected by reduced surface expression of the monocytic maturation marker CD11b and diminished cell adherence. Instead, administration of UCN-01 with PMA led to a marked increase in mitochondrial injury (e.g, cytochrome c release), activation of caspases-3 and -8, Bid cleavage, PARP degradation, and apoptosis, accompanied by a substantial reduction in viability and clonogenic survival. These phenomena were associated with multiple perturbations in cell cycle regulatory events, including abrogation of p21(CIP1) induction, p27(KIP1) cleavage, down-regulation of cyclin D1, dephosphorylation (activation) of p34cdc2, and degradation of underphosphorylated pRb. Potentiation of PMA-mediated apoptosis was partially mimicked by caffeine suggesting the involvement of Chk1 in the potentiation of apoptosis. Induction of cell death by UCN-01 and PMA was increased in cells stably expressing a p21(CIP1) mRNA antisense construct, suggesting that p21(CIP1) expression may protect cells from the lethal effects of this drug combination. Finally, ectopic expression of a Bcl-2 but not dominant-negative caspase-8 protected cells from UCN-01/PMA-mediated apoptosis, suggesting the lethal effects of this combination primarily involves the mitochondrial rather than the TNF-related extrinsic apoptotic pathway. Taken together, these findings suggest that UCN-01 disrupts a variety of cell cycle events in leukemic cells exposed to the maturation-inducing agent PMA, causing cells to engage an apoptotic rather than a differentiation-related program.  相似文献   

6.
Phytohemagglutinin (PHA) and a tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) act synergistically to induce interleukin 2 (IL2) mRNA in human lymphocytes in vitro. The induction was inhibited by a potent inhibitor of protein kinase C (C-kinase), 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) at less than 10 microM. H-7 inhibited C-kinase activity itself in lymphocytes at the same range of the concentration but did not interfere with the translocation of C-kinase from the cytosol to the membrane fraction of the lymphocytes induced by TPA. H-7 is also known to inhibit cAMP-dependent protein kinase (A-kinase) and cGMP-dependent protein kinase (G-kinase). However, the lymphocytes cultured with dibutyryl cAMP or dibutyryl cGMP could not be activated to produce IL2 mRNA. These results show that activation of C-kinase but not A-kinase and G-kinase is necessary in signal transduction for IL2 gene expression. Prostaglandin E2, which is known to elevate intracellular cAMP level, also inhibited IL2 mRNA induction in the lymphocytes stimulated with PHA and TPA. Addition of alpha-methylornithine and methylglyoxal bis (guanyl hydrazone), which inhibit polyamine synthesis, did not affect the induction of IL2 mRNA in the lymphocytes stimulated with PHA and TPA, indicating that polyamine synthesis is not necessary for IL2 mRNA induction.  相似文献   

7.
Transglutaminase 1 (TG1) is an enzyme that is expressed at the late stage of terminal differentiation of keratinocytes and catalyzes the ε-(γ-glutamyl)lysine cross-linking reaction to form a highly insoluble cell envelope. To elucidate the mechanism of TG1 gene expression in keratinocytes, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), dexamethasone, 1,25-dihydroxyvitamin D3, and retinoic acid on the levels of TG1 mRNA in cultured normal human epidermal keratinocytes (NHEK). Treatment of NHEK with TPA, Up to 10 nM, markedly increased the levels of TG1 mRNA in a dose-dependent manner. The effect by treatment with 1 nM TPA reached a peak after 16 h of incubation (20-fold above the basal level). In contrast, phorbol had no effect on TG1 gene expression. The induction of TG1 mRNA expression by TPA was inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine. Dexamethasone at a concentration of 1 μM also increased the TG1 mRNA levels, but the maximum induction was observed (3-fold above the basal level) after 72 h of incubation. The effect of dexamethasone was not suppressed by H-7. Moreover, 1 μM of retinoic acid completely inhibited the induction of TG1 mRNA by both TPA and dexamethasone. 1,25-Dihydroxyvitamin D3 showed no effect on the TG1 mRNA levels. From these results, we suggest that the expression of TG1 gene may be upregulated by protein kinase C and glucocorticoid receptor systems and down-regulated by the retinoic acid receptor system.  相似文献   

8.
UCN-01 is a naturally derived anticancer agent isolated in the culture broth of actinomyces streptomyces. We have developed a sensitive high-performance liquid chromatographic method for the determination of UCN-01 in human plasma. UCN-01 was isolated from human plasma after intravenous administration, by using 100% ice-cold acetonitrile liquid–liquid phase extraction. Liquid chromatographic separation was achieved by isocratic elution on a phenyl analytical column. The mobile phase consisted of acetonitrile–0.5 M ammonium acetate (45:55) with 0.2% triethylamine added as a modifier. The UCN-01 peak was identified from other peaks using fluorescence excitation energy and emission energy wavelengths of 310 and 410 nm, respectively. Retention time for UCN-01 was 4.2±0.5 min. The UCN-01 peak was baseline resolved, with nearest peak at 2.6 min distance. No interfering peaks were observed at the retention time of UCN-01. Peak area amounts from extracted samples were proportional over the dynamic concentration range used: 0.2 to 30 μg/ml. Mean recoveries of UCN-01 at concentrations of 0.5 and 25 μg/ml were 89 and 90.2%, respectively. Relative standard deviations for UCN-01 calibration standards ranged from 1.89 to 2.31%, with relative errors ranging from 0.3 to 11.6%. Assay precision for UCN-01 based on quality control samples of 0.50 μg/ml was ±4.86% with an accuracy of ±5.7%. For drug extracted from plasma the lowest limit of detection was 0.1 μg/ml, with the lowest limit of quantitation being 0.2 μg/ml. This method is suitable for routine analysis of UCN-01 in human plasma at concentration from 0.2 to 30 μg/ml.  相似文献   

9.
10.
12-O-tetradecanoylphorbol-13-acetate (TPA) caused a rapid activation of protein kinase C in a murine (HEL-30) and in a human (NCTC) epidermal cell line. In HEL-30 cells, protein kinase C activation is followed by ornithine decarboxylase stimulation and cell proliferation, events inhibited by H-7, a specific inhibitor of protein kinase C. TPA in NCTC cells inhibited the basal ornithine decarboxylase activity and cell growth, whereas H-7 did not modify TPA effect. The response of NCTC cells was not due to direct toxicity of TPA. These data confirm that in murine epidermal cells, the proliferation induced by TPA is mediated by protein kinase C, whereas in a human skin-derived cell line these events are not or inversely associated.  相似文献   

11.
DNA damage causes cell cycle arrest in G(1), S, or G(2) to prevent replication on damaged DNA or to prevent aberrant mitosis. The G(1) arrest requires the p53 tumor suppressor, yet the topoisomerase I inhibitor SN38 induces p53 after the G(1) checkpoint such that the cells only arrest in S or G(2). Hence, SN38 facilitates comparison of p53 wild-type and mutant cells with regard to the efficacy of drugs such as 7-hydroxystaurosporine (UCN-01) that abrogate S and G(2) arrest. UCN-01 abrogated S and G(2) arrest in the p53 mutant breast tumor cell line MDA-MB-231 but not in the p53 wild-type breast line, MCF10a. This resistance to UCN-01 in the p53 wild-type cells correlated with suppression of cyclins A and B. In the p53 mutant cells, low concentrations of UCN-01 caused S phase cells to progress to G(2) before undergoing mitosis and death, whereas high concentrations caused rapid premature mitosis and death of S phase cells. UCN-01 inhibits Chk1/2, which should activate the mitosis-inducing phosphatase Cdc25C, yet this phosphatase remained inactive during S phase progression induced by low concentrations of UCN-01, probably because Cdc25C is also inhibited by the constitutive kinase, C-TAK1. High concentrations of UCN-01 caused rapid activation of Cdc25C, which is attributed to inhibition of C-TAK1, as well as Chk1/2. Hence, UCN-01 has multiple effects depending on concentration and cell phenotype that must be considered when investigating mechanisms of checkpoint regulation.  相似文献   

12.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

13.
Although the translocation of protein kinase C and phospholipase A2 are well documented, no information is available about the possible down-modulation of transmembrane phospholipase C. We found that TPA induced a dose-dependent (10-200 nM) and time-dependent (15 min-6 h) down-modulation of transmembrane phosphoinositidase C (PLC-PI) on lymphoid cells (CEM-CM3 and WIL2-NS) and epitheloid carcinoma cells (HeLa S3) but not on human fibroblasts (MRC-5). Cell-surface expression of PLC-PI on intact cells was assayed by flow cytometry using saturating concentrations of polyclonal anti-PLC-PI antibodies and phycoerythrin-conjugate. A control phorbol-ester which does not activate protein kinase C (PKC) had no internalization effect on PLC-PI. PKC inhibitors staurosporine (2.5 nM) and H-7 (10 microM) partially inhibited the TPA effect. Cytochalasin B (40 micrograms/ml) did not modify the TPA-induced PLC-PI down-modulation. The effect of TPA on PLC-PI seems quite specific since no internalization was induced by TPA on transmembrane phosphatidylcholine-preferring PLC expression. These results show that TPA can translocate the membrane-bound PLC-PI, probably by PKC activation.  相似文献   

14.
The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2–UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.  相似文献   

15.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

16.
Interactions between the protein kinase inhibitor UCN-01 and the PKC activator phorbol ester (PMA) have been examined in relation to differentiation and apoptosis in human myelomonocytic leukemia cells (U937). Coadministratation of 100 nM UCN-01 with a low concentration of PMA e.g., 2 nM, inhibited rather than promoted differentiation, reflected by reduced surface expression of the monocytic maturation marker CD11b and diminished cell adherence. Instead, administration of UCN-01 with PMA led to a marked increase in mitochondrial injury (e.g, cytochrome c release), activation of caspases-3 and -8, Bid cleavage, PARP degradation, and apoptosis, accompanied by a substantial reduction in viability and clonogenic survival. These phenomena were associated with multiple perturbations in cell cycle regulatory events, including abrogation of p21CIP1 induction, p27KIP1 cleavage, down-regulation of cyclin D1, dephosphorylation (activation) of p34cdc2, and degradation of underphosphorylated pRb. Potentiation of PMA-mediated apoptosis was partially mimicked by caffeine suggesting the involvement of Chk1 in the potentiation of apoptosis. Induction of cell death by UCN-01 and PMA was increased in cells stably expressing a p21CIP1 mRNA antisense construct, suggesting that p21CIP1 expression may protect cells from the lethal effects of this drug combination. Finally, ectopic expression of a Bcl-2 but not dominant-negative caspase-8 protected cells from UCN-01/PMA-mediated apoptosis, suggesting the lethal effects of this combination primarily involves the mitochondrial rather than the TNF-related extrinsic apoptotic pathway. Taken together, these findings suggest that UCN-01 disrupts a variety of cell cycle events in leukemic cells exposed to the maturation-inducing agent PMA, causing cells to engage an apoptotic rather than a differentiation-related program.

Key Words:

PMA, UCN-01, Differentiation, Apoptosis  相似文献   

17.
Structural basis for Chk1 inhibition by UCN-01   总被引:5,自引:0,他引:5  
Chk1 is a serine-threonine kinase that plays an important role in the DNA damage response, including G(2)/M cell cycle control. UCN-01 (7-hydroxystaurosporine), currently in clinical trials, has recently been shown to be a potent Chk1 inhibitor that abrogates the G(2)/M checkpoint induced by DNA-damaging agents. To understand the structural basis of Chk1 inhibition by UCN-01, we determined the crystal structure of the Chk1 kinase domain in complex with UCN-01. Chk1 structures with staurosporine and its analog SB-218078 were also determined. All three compounds bind in the ATP-binding pocket of Chk1, producing only slight changes in the protein conformation. Selectivity of UCN-01 toward Chk1 over cyclin-dependent kinases can be explained by the presence of a hydroxyl group in the lactam moiety interacting with the ATP-binding pocket. Hydrophobic interactions and hydrogen-bonding interactions were observed in the structures between UCN-01 and the Chk1 kinase domain. The high structural complementarity of these interactions is consistent with the potency and selectivity of UCN-01.  相似文献   

18.
目的:探讨降钙素基因相关肽(CGRP)对臭氧(O3)应激后人支气管上皮细胞(HBECs)中E-钙粘素(E-cd)表达的影响及机制。方法:采用RT-PCR检测E-cd mRNA的表达,免疫细胞化学染色法检测E-cd蛋白的表达。结果:CGRP呈剂量依赖性增加正常以及O3应激后HBECs胞膜上E-cd的表达,而对胞浆内E-cd的表达无明显影响;CGRP对HBECs胞膜上E-cd表达的上调作用可分别被H-89(PKA抑制剂)、H-7(PKC抑制剂)及W-7(CaM抑制剂)部分逆转。结论:CGRP可剂量依赖性增加正常和O3应激后HBECs胞膜E-cd的表达,而对胞浆内E-cd的表达无影响。  相似文献   

19.
The role of protein kinase C activation in changes in muscarinic receptor functions and in the appearance of biochemical properties characteristic of neuronal cells was studied in SH-SY5Y human neuroblastoma cells induced to differentiate with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). A decrease in muscarinic receptor sensitivity with respect to agonist induced Ca2+ mobilization and receptor number parallelled the increase in membrane-associated protein kinase C (PK-C) activity. These changes occurred during the first 6 h of culture, and they were associated with rounding-up of cells. A subsequent decrease in particulate PK-C activity was followed by an increase in noradrenaline content, the appearance of an electrically excitable membrane, and an increase in the level of neuron-specific enolase. These changes were accompanied by a pronounced neurite outgrowth. 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (H-7), an inhibitor of PK-C and cyclic nucleotide-dependent protein kinases, enhanced the morphological differentiation induced by TPA, whereas N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004), which primarily inhibits cyclic nucleotide-dependent protein kinases, had no effect on the TPA-induced phenotypic differentiation. H-7 inhibited the decrease in muscarinic receptor sensitivity and receptor number, but had no effect on the appearance of the electrically excitable membrane or on the increase in the neuron-specific enolase level. Both H-7 and HA-1004 inhibited the TPA-induced increase in noradrenaline content.  相似文献   

20.
A B cell-specific monoclonal antibody (anti-Ba) was prepared. In two-color FACS analysis the anti-Ba reacted with a subpopulation of Ig+ or B1+ cells obtained from tonsils, but did not react with most B1+ cells derived from PBL. Activation of B cells from PBL with TPA or anti-mu induced Ba expression and the addition of PHA-conditioned supernatant with anti-mu-enhanced Ba expression. Other B cell activators, such as Staphylococcus aureus Cowan I (Staph-A) or PWM plus T cells, could induce Ba expression. Ba expression was observed 6 hr after stimulation and reached a peak level at 72 hr. Ba expression was strictly restricted to B cells. H-7, a specific inhibitor of protein kinase C (C-kinase), displayed a dose-dependent inhibitory effect on Ba expression, showing dependency on C-kinase for Ba expression. Anti-Ba inhibited B cell proliferation induced by anti-mu and B-BCGF distinct from BSF-1. The results presented in this study suggest that the Ba antigen on B cells may be comparable to the Tac antigen on T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号