共查询到20条相似文献,搜索用时 15 毫秒
1.
M Nakamura 《Journal of biochemistry》1990,108(2):245-249
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate. 相似文献
2.
Vitamin E derivatives bearing a carboxylic group have recently gained great attention because of their antitumoral properties. Garcinoic acid (trans-13'-carboxy-delta-tocotrienol) is a vitamin E analog extracted from Garcinia Kola seeds in which the carboxylic group is at the end of the aliphatic side chain and reported to be a racemate based on the optical rotation measurements. However, CD determination of a sample of the acid analyzed by us gave a positive peak at 208 nm, indicating that it is not a racemate. To assess the enantiomeric composition of garcinoic acid, it was thus transformed to alpha-tocopherol and analyzed by chiral HPLC on column OD-H. On the basis of the elution order of alpha-tocopherol stereoisomers, the garcinoic acid sample resulted to be enantiopure with R configuration at carbon 2 of the chroman ring. Moreover, in a preliminary test, the acid and some of its derivatives showed a marked antiproliferative effect on glioma C6 cancer cells. 相似文献
3.
4.
Inhibition of a nutrient-dependent pinocytosis in dictyostelium discoideum by the amino acid analogue hadacidin 总被引:2,自引:1,他引:2 下载免费PDF全文
In the present study we examine the effects of the drug hadacidin (N-formyl-N- hydroxyglycine) on pinocytosis in the eukaryotic microorganism dictyostelium discoideum. At concentrations of up to approximately 8 mg/ml, hadacidin inhibited the rate of pinocytosis of fluorescein isothiocyanate (FITC) dextran in cells in growth medium in a concentration-dependent manner but had no effect on cells in starvation medium. Because hadacidin also inhibits cellular proliferation at this concentration, the relationship between growth rate and pinocytosis was studied further using another drug, cerulenin, to produce growth-arrest. These experiments showed no changes in the rate pinocytosis even after complete cessation of cellular proliferation. Other studies showed that the transfer of cells from growth to starvation medium reduced the rate of pinocytosis by approximately 50 percent. A reduction of similar magnitude occurred if cells were transferred from growth to starvation medium containing hadacidin. Also, no additional reduction in pinocytosis occurred when cells that had been treated with hadacidin were transferred to starvation medium containing hadacidin. These cells were able to take up [(14)C]hadacidin in the starvation medium. In contrast to the results with hadacidin-treated cells, cells in a cerulenin-induced state of growth-arrest when transferred to starvation medium exhibited the same 50 percent reduction in pinocytosis observed in cells not previously exposed to either drug. Cells treated with azide, in either growth or starvation medium, exhibited an immediate inhibition of all pinocytotic activity. After the transfer of log-phase cells to starvation medium supplemented with glucose, the reduction in rate was only approximately 10-15 percent. In contrast, a 50 percent reduction was observed after supplementation of starvation medium with sucrose, KCl, or concanavalin A. Maintaining the cells in growth medium containing hadacidin for as long as 16 h had no effect on the rate at which cells aggregated. These results are consistent with the conclusion that D. discoideum exhibits two types of pinocytotic activity: one that is nutrient dependent and the other independent of nutrients. This latter activity persists in starvation medium and is unaffected by hadacidin, whereas the nutrient-dependent activity is present in growth medium and is inhibited by hadacidin. 相似文献
5.
6.
Rodríguez-Enríquez S Hernández-Esquivel L Marín-Hernández A Dong LF Akporiaye ET Neuzil J Ralph SJ Moreno-Sánchez R 《Biochimica et biophysica acta》2012,1817(9):1597-1607
The effects of α-tocopheryl succinate (α-TOS), α-tocopheryl acetyl ether (α-TEA) and triphenylphosphonium-tagged vitamin E succinate (mitochondrially targeted vitamin E succinate; MitoVES) on energy-related mitochondrial functions were determined in mitochondria isolated from AS-30D hepatoma and rat liver, bovine heart sub-mitochondrial particles (SMPs), and in rodent and human carcinoma cell lines and rat hepatocytes. In isolated mitochondria, MitoVES stimulated basal respiration and ATP hydrolysis, but inhibited net state 3 (ADP-stimulated) respiration and Ca(2+) uptake, by collapsing the membrane potential at low doses (1-10μM). Uncoupled mitochondrial respiration and basal respiration of SMPs were inhibited by the three drugs at concentrations at least one order of magnitude higher and with different efficacy: MitoVES>α-TEA>α-TOS. At high doses (>10μM), the respiratory complex II (CII) was the most sensitive MitoVES target. Acting as an uncoupler at low doses, this agent stimulated total O(2) uptake, collapsed ?ψ(m), inhibited oxidative phosphorylation and induced ATP depletion in rodent and human cancer cells more potently than in normal rat hepatocytes. These findings revealed that in situ tumor mitochondria are preferred targets of the drug, indicating its clinical relevance. 相似文献
7.
Summary The enantioselective synthesis of phosphonic analogue of kainic acid is described. 相似文献
8.
Filipe P Morlière P Patterson LK Hug GL Mazière JC Mazière C Freitas JP Fernandes A Santus R 《Biochemistry》2002,41(36):11057-11064
Selective oxidative damage to apolipoprotein B in LDL can be effected radiolytically by (*)Br(2)(-) radicals. Twenty-seven Trp residues constitute major primary sites of oxidation, but two-thirds of oxidized Trps ((*)Trp) that are formed are repaired by intramolecular electron transfer from Tyr residues with formation of phenoxyl radicals (TyrO(*)). Analysis of (*)Trp and TyrO(*) transient absorbance changes suggests that other apolipoprotein B residues, probably Cys, are oxidized. LDL-bound quercetin can efficiently repair this damage. Absorption studies show that a LDL particle has the capacity to bind approximately 10 quercetin molecules through interaction with apolipoprotein B. The repair occurs by intramolecular electron transfer characterized by a rate constant of 2 x 10(3) s(-)(1). In contrast, rutin, a related flavonoid which does not bind to LDL, cannot repair oxidized apolipoprotein B. Urate is a hydrophilic plasma antioxidant which displays synergistic antioxidant properties with flavonoids. Urate radicals produced by (*)Br(2)(-) can also be repaired by LDL-bound quercetin. This repair occurs with a reaction rate constant of 6.8 x 10(7) M(-)(1) s(-)(1). Comparison with previous studies conducted with human serum albumin-bound quercetin suggests that quercetin analogues tailored to be carried preferentially by lipoproteins might be more powerful plasma antioxidants than natural quercetin carried by serum albumin. 相似文献
9.
The tocopherol transfer protein (TTP) is a member of the CRAL-TRIO family of lipid binding proteins that facilitates vitamin E transfer between membrane vesicles in vitro. In cultured hepatocytes, TTP enhances the secretion of tocopherol to the media; presumably, tocopherol transfer is at the basis of this biological activity. The mechanism underlying ligand transfer by TTP is presently unknown, and available tools for monitoring this activity suffer from complicated assay procedure and poor sensitivity. We report the characterization of a fluorescent vitamin E analogue, (R)-2,5,7,8-tetramethylchroman-2-[9-(7-nitrobenz[1,2,5]oxadiazol-4-ylamino)nonyl]chroman-6-ol (NBD-TOH), as a sensitive and convenient probe for the ligand binding and transfer activities of TTP. Upon binding to TTP, NBD-TOH fluorescence is blue shifted, and its intensity is greatly enhanced. We used these properties to accurately determine the affinity of NBD-TOH to TTP. The analogue binds to TTP reversibly and with high affinity (K(d) = 8.5 +/- 6 nM). We determined the affinity of NBD-TOH to a TTP protein in which lysine 59 is replaced with a tryptophan. When occurring in humans, this heritable mutation causes the ataxia with vitamin E deficiency (AVED) disorder. We find that the affinity of NBD-TOH to this mutant TTP is greatly diminished (K(d) = 71 +/- 19 nM). NBD-TOH functioned as a sensitive fluorophore in fluorescent resonance energy transfer (FRET) experiments. Using the fluorescent lipids TRITC-DHPE or Marina Blue-DHPE as a donor or an acceptor for NBD-TOH fluorescence, we obtained high-resolution kinetic data for tocopherol movement out of lipid bilayers, a key step in the TTP-facilitated ligand transfer reaction. 相似文献
10.
Summary Treatment of diploid yeast cultures with the amino acid analogue, para-fluorophenylalanine (PFPA), at concentrations which caused inhibition of growth, resulted in up to 5 fold increases in the frequency of mitotic gene conversion at two different heteroallelic loci. With haploid yeast cultures, growth in PFPA increased the rate of forward mutation to canavanine resistance by at least 2 fold.Growth of diploids in PFPA prior to exposure to the deaminating agent nitrous acid, the cross-linking agent mitomycin C, the alkylating chemical ethylmethanesulphonate (EMS) and UV light resulted in significant changes in the potency of these diverse mutagens to induce intragenic recombination. For all four mutagens, increased frequencies of gene convertants/viable cell were observed in those cultures which had been exposed to the amino acid analogue prior to mutagen treatment. In haploid WT yeast cells, amino acid analogue incorporation resulted in an enhanced frequency of UV induced forward mutation to canavanine resistance whilst in a DNA repair deficient rad 6 mutant this interaction between UV and PFPA was abolished.The results have been interpreted on the basis of incorporation of the analogue into enzymes involved with DNA replication with a consequent loss of fidelity of such enzymes and increased errors in base incorporation. 相似文献
11.
The oxidation of 6-hydroxy-2,2,5,7,8-pentamethylchroman, Trolox C, and alpha-tocopherol by horseradish peroxidase was examined by stopped-flow and ESR experiments. The catalytic intermediate of horseradish peroxidase during the oxidation of vitamin E analogues and vitamin E was invariably Compound II, and rate constants for the rate-determining step decreased in the order 6-hydroxy-2,2,5,7,8-pentamethylchroman > Trolox C > alpha-tocopherol. The formation of phenoxyl radicals from substrates was verified with ESR and was followed optically. Resulting 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C radicals decayed through a dismutation reaction, followed by formation of the quinoid form via a transient intermediate. The sequence of events after formation of 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C radicals was similar to that observed by pulse radiolysis (Thomas, M. J., and Bielski, B. H. J. (1989). J. Am. Chem. Soc. 111, 3315-3319). Final oxidation products of 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C were identified as the quinoid forms and were obtained quantitatively whether or not the analogue had a carboxyl or methyl group at the 2-position of chroman ring. In contrast, enzymatic oxidation of alpha-tocopherol gave alpha-tocopherol quinone in very low yield. Conversion of 6-hydroxy-2,2,5,7,8-pentamethylchroman, Trolox C, and alpha-tocopherol to the corresponding quinones was also catalyzed by metmyoglobin in a reaction completely inhibited by ascorbate. 相似文献
12.
M Taub 《Journal of cellular physiology》1977,93(2):189-195
The mechanism of killing of A9 fibroblasts by 5-fluorotryptophan has been studied. L-tryptophan competitively relieves the growth inhibition caused by 5FT. After incubation with 5FT, 3H-5FT was incorporated into protein, replacing tryptophan residues. During the initial hours of incubation with 5FT, a specific inhibition was observed of the incorporation of L-tryptophan into protein; later this inhibition was followed by a general inhibition of protein synthesis and cell division. However, nuclear division continued after cell division had ceased. While 5FT was observed to be incorporated into protein after a 1 hour period in MEM + 0.40 mM 5FT in A9, no 3H-5FT was incorporated into protein in a mutant isolated by its resistance to killingy by 5FT. These results support the hypothesis that cell death occurs due to malfunctioning proteins which contain 5FT residues. 相似文献
13.
Albumin-bound quercetin repairs vitamin E oxidized by apolipoprotein radicals in native HDL3 and LDL
Filipe P Patterson LK Bartels DM Hug GL Freitas JP Mazière JC Santus R Morlière P 《Biochemistry》2007,46(49):14305-14315
In the minor fraction of HDL3 containing alpha-tocopherol (alphaTocOH), selective one-electron oxidation of Trp and Tyr residues of apolipoproteins A-I and A-II by *Br2- radical-anions produces the corresponding semioxidized species, TyrO* and *Trp. Repair of TyrO* by endogenous alphaTocOH generates the alpha-tocopheroxyl radical (alphaTocO*). Fast spectroscopic studies show that two populations representing 80% of alphaTocO* initially formed are repaired over several seconds with rate constants of 3.0 x 10(6) and 1.5 x 10(5) M-1 s-1 by quercetin bound to human serum albumin (HSA) at physiologically relevant concentration. Formation of HSA-bound quercetin radicals (*Qb) is observed. In the major fraction of HDL3 particles lacking alphaTocOH, TyrO* and *Trp are repaired by free and HSA-bound quercetin. In LDL particles which all contain alphaTocOH, alphaTocO* radicals are formed in the millisecond time scale by repair of TyrO* radicals produced in apolipoprotein B. Then, 75% of initial alphaTocO* are repaired over seconds by HSA-bound quercetin (rate constant: 2.0 x 10(6) M-1 s-1). HSA-bound quercetin can also repair *Trp radicals. In O2-saturated solutions, the fraction of alphaTocO* radicals (more than 50%) not repaired by superoxide radical-anions can be repaired by HSA-bound quercetin with formation of *Qb but to a much lesser extent in LDL than in HDL. 相似文献
14.
Developing a rational strategy to control intracellular reactive oxygen species (ROS) requires understanding the mechanism of antioxidant activity. In this investigation the properties of a novel synthetic analog of vitamin E (IRFI005) with potent antioxidant activity are described. A mechanism is proposed for its efficient radical-scavenging effects. Cellular antioxidant and antitoxicity assays showed IRFI005 to freely permeate across cellular membranes, enabling it to be an effective suppressor of intracellular ROS and to protect cells against toxicity induced by free radical generating compounds. The free radical-scavenging activity of IRFI005 examined by UV–Vis and electron spin resonance (ESR) techniques clearly confirmed a “two electrons and/or H-atom” donation mechanism for each molecule of IRFI005. Reducing power assay as well as semi-empirical calculations revealed that under physiological conditions (pH∼7) almost all IRFI005 molecules are in the anionic state (IRFI005−). Data indicated that the electron donating ability of IRFI005− was dominant at physiological pH because of higher stability of quinine-IRFI005− and less barrier energy of IRFI005− than neutral IRFI005. Consequently, the efficient cellular protection of IRFI005 against toxic free radicals can be explained by a two electron-transfer process, because of reduced inter-frontier molecular orbital energy gap barrier at physiological pH. Our findings suggest that hydrophilic vitamin E-like antioxidants are good candidates in designing novel therapeutic strategies for inhibition of oxidative stress associated with different human diseases. 相似文献
15.
Basing on data from literature vitamin E is considered for its possible effect on the exchange of arachidonic acid. It is supposed that vitamin E controls metabolism intensity of arachidonic acid by changing activity of phospholipase A2, cyclooxygenase and lipoxygenase. 相似文献
16.
Biochemical functions of certain amino acids and their role in improving fodder protein are described. Different aspects of biological significance of proteins and methods of its increase are discussed. It is indicated that concentrates prepared from green plants and starch- and cellulose-containing materials proteinized under the action of microorganisms can be used as an additional source of fodder protein. It is demonstrated that lysine and tryptophane concentrates can be effectively applied to raise the nutrient properties of fodder protein. The data are presented concerning the relations between protein and vitamin nutrition, as well as vitamin absorption and transport depending on the acceptor and receptor proteins of blood and tissues. 相似文献
17.
New stable vitamin E radicals (7-tert-butyl-5-isopropyltocopheroxyl (4), 5,7-diisopropyltocopheroxyl (5), 7-tert-butyl-5-methyltocopheroxyl (6), and 5,7-diethyltocopheroxyl (7] with two bulky alkyl substituents at ortho positions (C-5 and C-7) have been prepared, and the reaction rates of vitamin C (ascorbic acid (1) and 6-O-stearyl ascorbic acid (2] with these tocopheroxyl radicals in benzene/ethanol/water (2:1:0.1, v/v) solution have been determined spectrophotometrically, using a stopped-flow technique. The second-order rate constants, k2, obtained vary in the order of 10(3), and decrease dramatically in the order 7 greater than 6 greater than 5 greater than 4, as the size of two ortho-alkyl groups in tocopheroxyl increases. The result suggests that the effect of steric hindrance on the reaction rate is considerable. These reaction rates were compared with those of vitamin C with alpha-tocopheroxyl reported by Packer et al. (Nature 278 (1979) 737-738) and Scarpa et al. (Biochim. Biophys. Acta 801 (1984) 215-219). 相似文献
18.
Iuliano L Pedersen JZ Camastra C Bello V Ceccarelli S Violi F 《Free radical biology & medicine》1999,26(7-8):858-868
The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Antioxidants have been shown to protect LDL from oxidation and to inhibit atherosclerosis development in animals. Potent synthetic antioxidants are currently being tested, but they are not necessarily safe for human use. We here characterize the antioxidant activity of IRFI005, the active metabolite of Raxofelast (IRFI0016) that is a novel synthetic analog of vitamin E under clinical development, and demonstrate that it prevents oxidative modification of LDL. IFI005 inhibited the oxidative modification of LDL, measured through the generation of MDA, electrophoretic mobility and apo B100 fluorescence. During the oxidation process IRF1005 was consumed with the formation of the benzoquinone oxidation product. The powerful antioxidant activity of IRFI005 is at least in part mediated by a chain breaking mechanism as it is an efficient peroxyl radical scavenger with a rate constant k(IRFI005 + LOO(o)) of 1.8 X 10(6) M(-1)s(-1). 4. IRFI005 substantially preserved LDL-associated antioxidants, alpha-tocopherol and carotenoids, and when co-incubated with physiologic levels of ascorbate provoked a synergistic inhibition of LDL oxidation. Also the co-incubation of IRFI005 with Trolox caused a synergistic effect, and a lag phase in the formation of the trolox-benzoquinone oxidation product. A synergistic inhibition of lipid peroxidation was also demonstrated by co-incubating IRFI005 and alpha-tocopherol incorporated in linoleic acid micelles. These data strongly suggest that IRFI005 can operate by a recycling mechanism similar to the vitamin E/ascorbate sysem. 相似文献
19.
K Makino P Riesz 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1982,41(6):615-624
The free radicals produced by gamma-radiolysis of polycrystalline amino acids (L-valine, L-leucine, L-isoleucine and L-proline) at room temperature in the absence of air were investigated by spin trapping with 2-methyl-2-nitrosopropane (MNP). The spin adducts produced by dissolving the irradiated solids in aqueous MNP solutions were separated by high-performance liquid chromatography and then identified by e.s.r. Deamination (ring-opening reaction for L-proline) was observed for all amino acid. For L-valine and L-leucine, H-abstraction from the tertiary carbon in the side chains occurred. For isoleucine, H-abstractions from the alpha-carbon of the amino acid and from a non-terminal carbon in the side chain were found. 相似文献