首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.  相似文献   

2.
3.
A key question in developmental biology addresses the mechanism of asymmetric cell division. Asymmetry is crucial for generating cellular diversity required for development in multicellular organisms. As one of the potential mechanisms, chromosomally borne epigenetic difference between sister cells that changes mating/cell type has been demonstrated only in the Schizosaccharomyces pombe fission yeast. For technical reasons, it is nearly impossible to determine the existence of such a mechanism operating during embryonic development of multicellular organisms. Our work addresses whether such an epigenetic mechanism causes asymmetric cell division in the recently sequenced fission yeast, S. japonicus (with 36% GC content), which is highly diverged from the well-studied S. pombe species (with 44% GC content). We find that the genomic location and DNA sequences of the mating-type loci of S. japonicus differ vastly from those of the S. pombe species. Remarkably however, similar to S. pombe, the S. japonicus cells switch cell/mating type after undergoing two consecutive cycles of asymmetric cell divisions: only one among four “granddaughter” cells switches. The DNA-strand–specific epigenetic imprint at the mating-type locus1 initiates the recombination event, which is required for cellular differentiation. Therefore the S. pombe and S. japonicus mating systems provide the first two examples in which the intrinsic chirality of double helical structure of DNA forms the primary determinant of asymmetric cell division. Our results show that this unique strand-specific imprinting/segregation epigenetic mechanism for asymmetric cell division is evolutionary conserved. Motivated by these findings, we speculate that DNA-strand–specific epigenetic mechanisms might have evolved to dictate asymmetric cell division in diploid, higher eukaryotes as well.  相似文献   

4.
A Transparent Window into Biology: A Primer on Caenorhabditis elegans   总被引:1,自引:0,他引:1  
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.  相似文献   

5.
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.  相似文献   

6.
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.  相似文献   

7.
The protection of telomeres 1 (Pot1) proteins specifically recognize the single-stranded 3' end of the telomere, an activity essential for sustained cellular viability and proliferation. The current model for the telomeric single-stranded DNA (ssDNA) binding activity of Schizosaccharomyces pombe Pot1 is based on a 20 kDa fragment, Pot1pN. Recent biochemical studies suggest that SpPot1 contains a larger ssDNA-binding domain and we have identified a novel ssDNA-binding domain similar in size to the human Pot1 domain. This domain, Pot1(1-389), binds extremely tightly to an oligonucleotide consisting of two conserved hexameric S. pombe telomere repeats, d(GGTTACGGTTAC), with an affinity approximately 4000-fold tighter than Pot1pN binds its cognate ssDNA. The Pot1(1-389)/ssDNA complex exhibits a half-life of 53 min, consistent with that estimated for full-length SpPot1 and significantly longer than that of Pot1pN. Single nucleotide substitutions reveal that, in contrast to Pot1pN, tandem trinucleotide repeats (GTT) within d(GGTTACGGTTAC) are specifically recognized by Pot1(1-389). Interestingly, certain single nucleotide substitutions that impacted Pot1pN binding exhibited no effect on binding affinity by Pot1(1-389). However, these substitutions reduced binding affinity when simultaneously substituted in each hexameric repeat. The non-additive nature of these substitutions suggests that certain nucleotides are coupled through the ability of the flexible ssDNA oligonucleotide to adopt alternate, thermodynamically equivalent conformations. The biochemical behavior of Pot1(1-389) is more similar to that of the full-length SpPot1 protein than to that of Pot1pN, making Pot1(1-389) a valuable domain for the future study of how full-length SpPot1 interacts with telomeric ssDNA.  相似文献   

8.
Zhiqiang Du  Liming Li 《Genetics》2014,197(2):685-700
The relationship between quantitative genetics and population genetics has been studied for nearly a century, almost since the existence of these two disciplines. Here we ask to what extent quantitative genetic models in which selection is assumed to operate on a polygenic trait predict adaptive fixations that may lead to footprints in the genome (selective sweeps). We study two-locus models of stabilizing selection (with and without genetic drift) by simulations and analytically. For symmetric viability selection we find that ∼16% of the trajectories may lead to fixation if the initial allele frequencies are sampled from the neutral site-frequency spectrum and the effect sizes are uniformly distributed. However, if the population is preadapted when it undergoes an environmental change (i.e., sits in one of the equilibria of the model), the fixation probability decreases dramatically. In other two-locus models with general viabilities or an optimum shift, the proportion of adaptive fixations may increase to >24%. Similarly, genetic drift leads to a higher probability of fixation. The predictions of alternative quantitative genetics models, initial conditions, and effect-size distributions are also discussed.  相似文献   

9.
Genome annotation, assisted by computer programs, is one of the great advances in modern biology. Nevertheless, the in silico identification of small and complex coding sequences is still challenging. We observed that amino acid sequences inferred from coding—but rarely from non-coding—DNA sequences accumulated alignments in low-stringency BLAST searches, suggesting that this alignments accumulation could be used to highlight coding regions in sequenced DNA. To investigate this possibility, we developed a computer program (AnABlast) that generates profiles of accumulated alignments in query amino acid sequences using a low-stringency BLAST strategy. To validate this approach, all six-frame translations of DNA sequences between every two annotated exons of the fission yeast genome were analysed with AnABlast. AnABlast-generated profiles identified three new copies of known genes, and four new genes supported by experimental evidence. New pseudogenes, ancestral carboxyl- and amino-terminal subtractions, complex gene rearrangements, and ancient fragments of mitDNA and of bacterial origin, were also inferred. Thus, this novel in silico approach provides a powerful tool to uncover new genes, as well as fossil-coding sequences, thus providing insight into the evolutionary history of annotated genomes.  相似文献   

10.
11.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.  相似文献   

12.
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD+-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H2O2 than wild-type cells. H2O2 treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability.  相似文献   

13.
Regulated protein degradation is crucial for virtually every cellular function. Much of what is known about the molecular mechanisms and genetic requirements for eukaryotic protein degradation was initially established in Saccharomyces cerevisiae. Classical analyses of protein degradation have relied on biochemical pulse-chase and cycloheximide-chase methodologies. While these techniques provide sensitive means for observing protein degradation, they are laborious, time-consuming, and low-throughput. These approaches are not amenable to rapid or large-scale screening for mutations that prevent protein degradation. Here, a yeast growth-based assay for the facile identification of genetic requirements for protein degradation is described. In this assay, a reporter enzyme required for growth under specific selective conditions is fused to an unstable protein. Cells lacking the endogenous reporter enzyme but expressing the fusion protein can grow under selective conditions only when the fusion protein is stabilized (i.e. when protein degradation is compromised). In the growth assay described here, serial dilutions of wild-type and mutant yeast cells harboring a plasmid encoding a fusion protein are spotted onto selective and non-selective medium. Growth under selective conditions is consistent with degradation impairment by a given mutation. Increased protein abundance should be biochemically confirmed. A method for the rapid extraction of yeast proteins in a form suitable for electrophoresis and western blotting is also demonstrated. A growth-based readout for protein stability, combined with a simple protocol for protein extraction for biochemical analysis, facilitates rapid identification of genetic requirements for protein degradation. These techniques can be adapted to monitor degradation of a variety of short-lived proteins. In the example presented, the His3 enzyme, which is required for histidine biosynthesis, was fused to Deg1-Sec62. Deg1-Sec62 is targeted for degradation after it aberrantly engages the endoplasmic reticulum translocon. Cells harboring Deg1-Sec62-His3 were able to grow under selective conditions when the protein was stabilized.  相似文献   

14.
15.
The transposition of the Ty mobile genetic element of Saccharomyces cerevisiae is induced by carcinogens. While the molecular background of spontaneous Ty1 transposition is well understood, the detailed mechanism of carcinogen induced Ty1 transposition is not clear. We found that mitochondrial functions participate in the Ty induced transposition induced by carcinogens. Contrary to the parental rho(+) cells rho(-) mutants (spontaneous or induced by ethidium bromide) do not increase the rate of Ty1 transposition upon treatment with carcinogens. Preliminary results strongly suggest that the absence of oxidative phosphorylation in rho(-) mutants is the reason for the inhibited Ty transposition. The lack of carcinogen induced Ty1 transposition in rho(-) cells is not specific for a particular carcinogen and represents a general feature of different carcinogenic substances inducing rho(-). It is concluded that carcinogen induced Ty1 transposition depends on the functional state of mitochondria and cannot take place in cells with compromised mitochondrial function (rho(-)).  相似文献   

16.
Potato cyst nematodes cost the potato industry substantial financial losses annually. Through the use of molecular markers, the distribution and infestation routes of these nematodes can be better elucidated, permitting the development of more effective preventative methods. Here we assess the ability of three molecular markers to resolve multiple representatives of five Globodera pallida populations as monophyletic groups. Molecular markers included a region of the rbp-1 gene (an effector), a non-coding nuclear DNA region (the ITS region), and a novel marker for G. pallida, a ∼3.4 kb non-coding mitochondrial DNA (mtDNA) region. Multiple phylogenetic analysis methods were performed on the three DNA regions separately, and on a data set of these three regions combined. The analyses of the combined data set were similar to that of the sole mtDNA marker; resolving more populations as monophyletic groups, relative to that of the ITS region and rbp-1 gene region. This suggests that individual markers may be inadequate for distinguishing populations of G. pallida. The use of this new non-coding mtDNA marker may provide further insights into the historical distribution of G. pallida, as well as enable the development of more sensitive diagnostic methods.  相似文献   

17.
Background and Aims Ulmus minor has been severely affected by Dutch elm disease (DED). The introduction into Europe of the exotic Ulmus pumila, highly tolerant to DED, has resulted in it widely replacing native U. minor populations. Morphological and genetic evidence of hybridization has been reported, and thus there is a need for assessment of interspecific gene flow patterns in natural populations. This work therefore aimed at studying pollen gene flow in a remnant U. minor stand surrounded by trees of both species scattered across an agricultural landscape.Methods All trees from a small natural stand (350 in number) and the surrounding agricultural area within a 5-km radius (89) were genotyped at six microsatellite loci. Trees were morphologically characterized as U. minor, U. pumila or intermediate phenotypes, and morphological identification was compared with Bayesian clustering of genotypes. For paternity analysis, seeds were collected in two consecutive years from 20 and 28 mother trees. Maximum likelihood paternity assignment was used to elucidate intra- and interspecific gene flow patterns.Key Results Genetic structure analyses indicated the presence of two genetic clusters only partially matching the morphological identification. The paternity analysis results were consistent between the two consecutive years of sampling and showed high pollen immigration rates (∼0·80) and mean pollination distances (∼3 km), and a skewed distribution of reproductive success. Few intercluster pollinations and putative hybrid individuals were found.Conclusions Pollen gene flow is not impeded in the fragmented agricultural landscape investigated. High pollen immigration and extensive pollen dispersal distances are probably counteracting the potential loss of genetic variation caused by isolation. Some evidence was also found that U. minor and U. pumila can hybridize when in sympatry. Although hybridization might have beneficial effects on both species, remnant U. minor populations represent a valuable source of genetic diversity that needs to be preserved.  相似文献   

18.
The majority of all known diseases are accompanied by disorders of the cardiovascular system. Studies into the complexity of the interacting pathways activated during cardiovascular pathologies are, however, limited by the lack of robust and physiologically relevant methods. In order to model pathological vascular events we have developed an in vitro assay for studying the interaction between endothelium and whole blood. The assay consists of primary human endothelial cells, which are placed in contact with human whole blood. The method utilizes native blood with no or very little anticoagulant, enabling study of delicate interactions between molecular and cellular components present in a blood vessel.We investigated functionality of the assay by comparing activation of coagulation by different blood volumes incubated with or without human umbilical vein endothelial cells (HUVEC). Whereas a larger blood volume contributed to an increase in the formation of thrombin antithrombin (TAT) complexes, presence of HUVEC resulted in reduced activation of coagulation. Furthermore, we applied image analysis of leukocyte attachment to HUVEC stimulated with tumor necrosis factor (TNFα) and found the presence of CD16+ cells to be significantly higher on TNFα stimulated cells as compared to unstimulated cells after blood contact. In conclusion, the assay may be applied to study vascular pathologies, where interactions between the endothelium and the blood compartment are perturbed.  相似文献   

19.
Glucocorticoid stress hormones and their artificial derivatives are widely used drugs to treat inflammation, but long-term treatment with glucocorticoids can lead to severe side effects. Test systems are needed to search for novel compounds influencing glucocorticoid signaling in vivo or to determine unwanted effects of compounds on the glucocorticoid signaling pathway. We have established a transgenic zebrafish assay which allows the measurement of glucocorticoid signaling activity in vivo and in real-time, the GRIZLY assay (Glucocorticoid Responsive In vivo Zebrafish Luciferase activitY). The luciferase-based assay detects effects on glucocorticoid signaling with high sensitivity and specificity, including effects by compounds that require metabolization or affect endogenous glucocorticoid production. We present here a detailed protocol for conducting chemical screens with this assay. We describe data acquisition, normalization, and analysis, placing a focus on quality control and data visualization. The assay provides a simple, time-resolved, and quantitative readout. It can be operated as a stand-alone platform, but is also easily integrated into high-throughput screening workflows. It furthermore allows for many applications beyond chemical screening, such as environmental monitoring of endocrine disruptors or stress research.  相似文献   

20.
This study was attempted to develop a new exponential sum model to describe the effect of temperature on growth rate (GR) of Escherichia coli O157:H7 in broth. The growth rates of E. coli O157:H7 at different storage temperatures (4, 10, 15, 20, 25, 30, and 35°C) estimated by fitting with the modified Gompertz model were used to develop secondary models such as square root model, Ratkowsky model and exponential sum model. Measures of coefficient of determination (R 2), root mean square error (RMSE) and the sum of squares due to error (SSE) were employed to compare the performances of these three secondary models. Based on these criteria, the developed exponential sum model showed the better goodness-of-fit and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号