首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the recovery of a nuclear recessive mutation in Nicotiana sylvestris (Spegazzini and Comes) producing a conditional disruption in the pathway for synthesis of chlorophyll a and b and carotenoids which is fully reversible by exogenous thiamine (0.3 micromolar). In the absence of supplemental thiamine, chlorophyll levels declined by 50% after 5 days, and fell to undetectable levels by 11 days. Mitochondrial (KCN sensitive) respiration rates remained normal in albino leaves (80% loss of chlorophyll), suggesting that chlorosis results primarily from a deficiency of thiamine in the chloroplasts. After thiamine removal, mutant plants produced at least 10 albino leaves with a substantial capacity for growth (0-15 centimeters; 70-fold increase in area), demonstrating sustained operation of many cellular functions in spite of chloroplast disruption. Activities of the plastid isozymes of phosphoglucomutase and phosphoglucoisomerase in albino leaves indicated that the decline in pigment synthesis does not result from a general loss of metabolic activity in chloroplast. Plastid pyruvate dehydrogenase from mutant and wild-type plants displayed a similar affinity for thiamine pyrophosphate, showing that chlorosis does not result from an alteration in this enzyme. Growth of albino leaves and ultrastructural evidence for thylakoid membranes in the chloroplasts suggest that a certain level of fatty acid synthesis is maintained after the interruption of pigment synthesis. Since thiamine deprivation is expected to block production of acetyl-coenzyme A from pyruvate by pyruvate dehydrogenase, acetyl-coenzyme A supporting fatty acid synthesis in albino leaves may be derived solely from mitochondrial acetate.  相似文献   

3.
The molecula-kinetic parameters (Km, Ki) of three thiamine enzymes, e. g. thiamine pyrophosphokinase (EC 2.7.6.2), pyruvate dehydrogenase (EC 1.2.4.1) and transketolase (EC 2.2.1.1) with respect to the effects of the thiamine antimetabolite hydroxythiamine in the whole animal organism have been compared. It has been shown that only the first two enzymes, which interact competitively with the vitamin, antivitamin or their pyrophosphate ethers, obey the kinetic parameters obtained for the purified enzymes in vitro. The anticoenzymic effect of hydroxythiamine pyrophosphate with respect to transketolase is not observed in vivo at maximal concentration of the anticoenzyme in tissues due to the absence of competitive interactions with thiamine pyrophosphate. The incorporation of the true and false coenzymes into transketolase occurs only during de novo transketolase synthesis (the apoform is absent in tissues, with the exception of erythrocytes) and proceeds slowly with a half-life time equal to 24--30 hrs. After a single injection of hydroxythiamine at a large dose (70--400 mg/kg) the maximal inhibition of the transketolase activity in tissues (liver, heart, kidney, muscle, spleen, lungs adrenal grands) manifests itself by the 48th--72nd hour, when the concentration of free hydroxythiamine and its pyrophosphate is minimal and the whole anticoenzyme is tightly bound to the protein, forming the false holoenzyme. The use of hydroxythiamine for inhibition of pyruvate dehydrogenase or transketolase in animal organism is discussed.  相似文献   

4.
Anthranilate synthase (AS), the control enzyme of the tryptophan (Trp) biosynthetic pathway, is encoded by nuclear genes, but is transported into the plastids. A tobacco (Nicotiana tabacum) cDNA (ASA2) encoding a feedback-insensitive tobacco AS alpha-subunit was transformed into two different sites of the tobacco plastid genome through site-specific insertion to obtain transplastomic plants with normal phenotype and fertility. A high and uniform level of ASA2 mRNA was observed in the transplastomic plants but not in the wild type. Although the plants with the transgene insertion at ndhF-trnL only expressed one size of the ASA2 mRNA, the plants with the transgene incorporated into the region between accD and open reading frame (ORF) 184 exhibited two species of mRNA, apparently due to readthrough. The transplastomic plants exhibited a higher level of AS alpha-subunit protein and AS enzyme activity that was less sensitive to Trp-feedback inhibition, leading to greatly increased free Trp levels in leaves and total Trp levels in seeds. Resistance to an AS inhibitor, 5-methyl-Trp, was found during seed germination and in suspension cultures of the transplastomic plants. The resistance to the selection agent spectinomycin and to 5-methyl-Trp was transmitted maternally. These results demonstrate the feasibility of modifying the biosynthetic pathways of important metabolites through transformation of the plastid genome by relocating a native gene from the nucleus to the plastid genome. Very high and uniform levels of gene expression can be observed in different lines, probably due to the identical insertion sites, in contrast to nuclear transformation where random insertions occur.  相似文献   

5.
6.
FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.  相似文献   

7.
Kinetic Studies of Mouse Brain Transketolase   总被引:3,自引:3,他引:0  
Abstract: The activity of transketolase in mouse brain was 5.7 nmol/min/mg protein measured by an enzyme-coupled spectrophotometric assay. The apparent Km for ribose-5-phosphate was 330 μ M , for d -xylulose-5-phosphate was 120 μ M , and for thiamine pyrophosphate was 7 μ M . However, thiamine pyrophosphate remained tightly bound to transketolase in homogenates in which it dissociated completely from another thiamine pyrophosphate- dependent enzyme, the pyruvate dehydrogenase complex. These data suggest that loss of transketolase activity is likely to be a later consequence of thiamine deficiency in mammalian brain than is decreased activity of pyruvate dehydrogenase complex.  相似文献   

8.
The growth of a thiamine pyrophosphate auxotroph of Escherichi coli was inhibited by either thiamine or thiamine monophosphate, and the growth of a thiamine monophosphate auxotroph was inhibited by thiamine. The thiamine pyrophosphate-dependent oxidation of pyruvate was inhibited by thiamine with whole cells of the thiamine pyrophosphate auxotroph but not with cell extracts prepared from the same organism. In addition, the thiamine pyrophosphate uptake of the thiamine pyrophosphate auxotroph was inhibited by either thiamine or thiamine monophosphate. Although the thiamine pyrophosphate uptake of a revertant, selected for prototrophy from the thiamine monophosphate auxotroph, was inhibited by thiamine to an extent comparable to that observed with the thiamine monophosphate auxotroph, its growth was no longer inhibited by thiamine. A possible mechanism for the inhibition by thiamine and thiamine monophosphate in the utilization of thiamine pyrophosphate is discussed.  相似文献   

9.
The ndh genes encoding for the subunits of NAD(P)H dehydrogenase complex represent the largest family of plastid genes without a clearly defined function. Tobacco (Nicotiana tabacum) plastid transformants were produced in which the ndhB gene was inactivated by replacing it with a mutant version possessing translational stops in the coding region. Western-blot analysis indicated that no functional NAD(P)H dehydrogenase complex can be assembled in the plastid transformants. Chlorophyll fluorescence measurements showed that dark reduction of the plastoquinone pool by stromal reductants was impaired in ndhB-inactivated plants. Both the phenotype and photosynthetic performance of the plastid transformants was completely normal under favorable conditions. However, an enhanced growth retardation of ndhB-inactivated plants was revealed under humidity stress conditions causing a moderate decline in photosynthesis via stomatal closure. This distinctive phenotype was mimicked under normal humidity by spraying plants with abscisic acid. Measurements of CO(2) fixation demonstrated an enhanced decline in photosynthesis in the mutant plants under humidity stress, which could be restored to wild-type levels by elevating the external CO(2) concentration. These results suggest that the plastid NAD(P)H:plastoquinone oxidoreductase in tobacco performs a significant physiological role by facilitating photosynthesis at moderate CO(2) limitation.  相似文献   

10.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.  相似文献   

11.
Thiamine deficiency frequently occurs in patients with advanced cancer and therefore thiamine supplementation is used as nutritional support. Thiamine (vitamin B1) is metabolized to thiamine pyrophosphate, the cofactor of transketolase, which is involved in ribose synthesis, necessary for cell replication. Thus, it is important to determine whether the benefits of thiamine supplementation outweigh the risks of tumor proliferation. Using oxythiamine (an irreversible inhibitor of transketolase) and metabolic control analysis (MCA) methods, we measured an in vivo tumour growth control coefficient of 0.9 for the thiamine-transketolase complex in mice with Ehrlich's ascites tumour. Thus, transketolase enzyme and thiamine clearly determine cell proliferation in the Ehrlich's ascites tumour model. This high control coefficient allows us to predict that in advanced tumours, which are commonly thiamine deficient, supplementation of thiamine could significantly increase tumour growth through transketolase activation. The effect of thiamine supplementation on tumour proliferation was demonstrated by in vivo experiments in mice with the ascites tumour. Thiamine supplementation in doses between 12.5 and 250 times the recommended dietary allowance (RDA) for mice were administered starting on day four of tumour inoculation. We observed a high stimulatory effect on tumour growth of 164% compared to controls at a thiamine dose of 25 times the RDA. This growth stimulatory effect was predicted on the basis of correction of the pre-existing level of thiamine deficiency (42%), as assayed by the cofactor/enzyme ratio. Interestingly, at very high overdoses of thiamine, approximately 2500 times the RDA, thiamine supplementation had the opposite effect and caused 10% inhibition of tumour growth. This effect was heightened, resulting in a 36% decrease, when thiamine supplementation was administered from the 7th day prior to tumour inoculation. Our results show that thiamine supplementation sufficient to correct existing thiamine deficiency stimulates tumour proliferation as predicted by MCA. The tumour inhibitory effect at high doses of thiamine is unexplained and merits further study.  相似文献   

12.
ABSTRACT. The glaucocystophyte Cyanophora paradoxa is an obligatorily photoautotrophic biflagellated protist containing cyanelles, peculiar plastids surrounded by a peptidoglycan layer between their inner and outer envelope membranes. Although the 136-kb cyanelle genome surpasses higher plant chloroplast genomes in coding capacity by about 50 protein genes, these primitive plastids still have to import >2,000 polypeptides across their unique organelle wall. One such protein is transketolase, an essential enzyme of the Calvin cycle. We report the sequence of the pre-transketolase cDNA from C. paradoxa and in vitro import experiments of precursor polypeptides into cyanelles and into pea chloroplasts. The transit sequence clearly indicates the localization of the gene product to cyanelles and is more similar to the transit sequences of the plant homologues than to transit sequences of other cyanelle precursor polypeptides with the exception of a cyanelle consensus sequence at the N-terminus. The mature sequence reveals conservation of the thiamine pyrophosphate binding site. A neighbor-net planar graph suggests that Cyanophora , higher plants, and the photosynthetic protist Euglena gracilis acquired their nuclear-encoded transketolase genes via endosymbiotic gene transfer from the cyanobacterial ancestor of plastids; in the case of Euglena probably entailing two transfers, once from the plastid in the green algal lineage and once again in the secondary endosymbiosis underlying the origin of Euglena's plastids. By contrast, transketolase genes in some eukaryotes with secondary plastids of red algal origin, such as Thalassiosira pseudonana , have retained the pre-existing transketolase gene germane to their secondary host.  相似文献   

13.
The high-value carotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is one of the most potent antioxidants in nature. In addition to its large-scale use in fish farming, the pigment has applications as a food supplement and an active ingredient in cosmetics and in pharmaceuticals for the treatment of diseases linked to reactive oxygen species. The biochemical pathway for astaxanthin synthesis has been introduced into seed plants, which do not naturally synthesize this pigment, by nuclear and plastid engineering. The highest accumulation rates have been achieved in transplastomic plants, but massive production of astaxanthin has resulted in severe growth retardation. What limits astaxanthin accumulation levels and what causes the mutant phenotype is unknown. Here, we addressed these questions by making astaxanthin synthesis in tobacco (Nicotiana tabacum) plastids inducible by a synthetic riboswitch. We show that, already in the uninduced state, astaxanthin accumulates to similarly high levels as in transplastomic plants expressing the pathway constitutively. Importantly, the inducible plants displayed wild-type–like growth properties and riboswitch induction resulted in a further increase in astaxanthin accumulation. Our data suggest that the mutant phenotype associated with constitutive astaxanthin synthesis is due to massive metabolite turnover, and indicate that astaxanthin accumulation is limited by the sequestration capacity of the plastid.

Inducible expression of a synthetic astaxanthin operon in plastids alleviates the growth phenotype of constitutive pathway expression and provides insights into carotenoid biosynthesis bottlenecks.  相似文献   

14.
Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in the oxidative decarboxylation of either pyruvate, α-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psychomotor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift mutation resulting in decreased TPK protein levels.  相似文献   

15.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

16.
Ferredoxins are iron–sulfur proteins involved in various one-electron transfer pathways. Ferredoxin levels decrease under adverse environmental conditions in photosynthetic organisms. In cyanobacteria, this decline is compensated by induction of flavodoxin, an isofunctional flavoprotein. Flavodoxin is not present in higher plants, but transgenic Nicotiana tabacum lines accumulating Anabaena flavodoxin in plastids display increased tolerance to different sources of environmental stress. As the degree of tolerance correlated with flavodoxin dosage in plastids of nuclear-transformed transgenic tobacco, we prepared plants expressing even higher levels of flavodoxin by direct plastid transformation. A suite of nuclear- and chloroplast-transformed lines expressing a wide range of flavodoxin levels, from 0.3 to 10.8?μmol?m?2, did not exhibit any detectable growth phenotype relative to the wild type. In the absence of stress, the contents of both chlorophyll a and carotenoids, as well as the photosynthetic performance (photosystem II maximum efficiency, photosystem II operating efficiency, electron transport rates and carbon assimilation rates), displayed a moderate increase with flavodoxin concentrations up to 1.3–2.6?μmol flavodoxin m?2, and then declined to wild-type levels. Stress tolerance, as estimated by the damage inflicted on exposure to the pro-oxidant methyl viologen, also exhibited a bell-shaped response, with a significant, dose-dependent increase in tolerance followed by a drop in the high-expressing lines. The results indicate that optimal photosynthetic performance and stress tolerance were observed at flavodoxin levels comparable to those of endogenous ferredoxin. Further increases in flavodoxin content become detrimental to plant fitness.  相似文献   

17.
Rapid evolution of RNA editing sites in a small non-essential plastid gene   总被引:3,自引:0,他引:3  
Chloroplast RNA editing proceeds by C-to-U transitions at highly specific sites. Here, we provide a phylogenetic analysis of RNA editing in a small plastid gene, petL, encoding subunit VI of the cytochrome b6f complex. Analyzing representatives from most major groups of seed plants, we find an unexpectedly high frequency and dynamics of RNA editing. High-frequency editing has previously been observed in plastid ndh genes, which are remarkable in that their mutational inactivation does not produce an obvious mutant phenotype. In order to test the idea that reduced functional constraints allow for more flexible evolution of RNA editing sites, we have created petL knockout plants by tobacco chloroplast transformation. We find that, in the higher plant tobacco, targeted inactivation of petL does not impair plant growth under a variety of conditions markedly contrasting the important role of petL in photosynthesis in the green alga Chlamydomonas reinhardtii. Together with a low number of editing sites in plastid genes that are essential to gene expression and photosynthetic activity, these data suggest that RNA editing sites may evolve more readily in those genes whose transitory loss of function can be tolerated. Accumulated evidence for this ‘relative neutrality hypothesis for the evolution of plastid editing sites’ is discussed.  相似文献   

18.
Summary C-6 glioma and C-1300 neuroblastoma cells were cultured in thiamine deficient and control media. Thiamine levels, transketolase and pyruvate decarboxylase activities, and high energy phosphate metabolites were all measured in deficient and control cells. Thiamine levels in the deficient cells were found to be below the level of detectability. Pyruvate decarboxylase activity was more susceptible to thiamine deficiency in both cell lines than transketolase. In spite of the large decrease in pyruvate decarboxylase activity, high energy phosphate metabolites were not decreased in either cell line. These data indicate that C-6 glioma and C-1300 neuroblastoma cells have the capacity to maintain normal energy metabolites in the presence of large changes in thiamine levels and thiamine dependent enzyme activity.Supported in part by USPHS grant AA 01391.  相似文献   

19.
The binding between thiamine pyrophosphate and transketolase, purified from baker's yeast, in equilibrium conditions has been studied. In the presence of Ca2+, the enzyme molecule has been shown to possess two binding sites for the coenzyme, whose dissociation constants are 3.2 × 10?8 and 2.5 × 10?7M; besides, there are site(s) where the binding of the coenzyme is less firm. In the presence of Mg2+, a positive cooperative interaction between the binding sites of thiamine pyrophosphate has been observed. Regardless of the cation used, the major part of the catalytic activity of the transketolase molecule manifests itself in the binding of one molecule of the coenzyme.  相似文献   

20.
Orthopoxviruses (OPVs) have recently received increasing attention because of their potential use in bioterrorism and the occurrence of zoonotic OPV outbreaks, highlighting the need for the development of safe and cost‐effective vaccines against smallpox and related viruses. In this respect, the production of subunit protein‐based vaccines in transgenic plants is an attractive approach. For this purpose, the A27L immunogenic protein of vaccinia virus was expressed in tobacco using stable transformation of the nuclear or plastid genome. The vaccinia virus protein was expressed in the stroma of transplastomic plants in soluble form and accumulated to about 18% of total soluble protein (equivalent to approximately 1.7 mg/g fresh weight). This level of A27L accumulation was 500‐fold higher than that in nuclear transformed plants, and did not decline during leaf development. Transplastomic plants showed a partial reduction in growth and were chlorotic, but reached maturity and set fertile seeds. Analysis by immunofluorescence microscopy indicated altered chlorophyll distribution. Chloroplast‐synthesized A27L formed oligomers, suggesting correct folding and quaternary structure, and was recognized by serum from a patient recently infected by a zoonotic OPV. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of OPV subunit vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号