首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
X chromosome inactivation is initiated from a segment of the mammalian X chromosome called the X inactivation center. Transgenes from this region of the murine X chromosome are providing the means to identify the DNA needed for cis inactivation in mice. We recently showed that chimeric mice carrying transgenes from the human X inactivation center (XIC) region also provide a functional assay for human XIC activity; approximately 6 copies of a 480-kb human transgene (ES-10) were sufficient to initiate random X inactivation in cells of male chimeric mice (Migeon et al., 1999, Genomics, 59, 113-121). Now, we report studies of another human transgene (ES-5), which contains less than 300 kb of the human XIC region on Xq13.2 including an intact XIST locus and which has inserted in one or two copies into mouse chromosome 6. The ES-5 transgene is recognized as an X inactivation center in mouse embryonic stem cells, but is not sufficient to induce random X inactivation in somatic cells of highly chimeric mice. Human transgenes in chimeric mice provide a means to uncouple the key steps in this complex pathway and facilitate the search for essential components of the human XIC region.  相似文献   

4.
5.
Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations.The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation.  相似文献   

6.
Watanabe Y  Tenzen T  Nagasaka Y  Inoko H  Ikemura T 《Gene》2000,252(1-2):163-172
The human genome is composed of long-range G+C% mosaic structures, which are thought to be related to chromosome bands. Replication timing during S phase is associated with chromosomal band zones; thus, band boundaries are thought to correspond to regions where replication timing switches. The proximal limit of the human X-inactivation center (XIC) has been localized cytologically to the junction zone between Xq13.1 and Xq13.2. Using PCR-based quantification of the newly replicated DNA from cell-cycle fractionated THP-1 cells, the replication timing in and around the XIC was determined at the genome sequence level. We found two regions where replication timing changes from the early to late period during S phase. One is located near a large inverted duplication proximal to the XIC, and the other is near the XIST locus. We propose that the 1Mb late-replicated zone (from the large inverted duplication to XIST) corresponds to a G-band Xq13.2. Several common characteristics were observed in the XIST region and the MHC class II-III junction which was previously defined as a band boundary. These characteristics included differential high-density clustering of Alu and LINE repeats, and the presence of polypurine/polypyrimidine tracts, MER41A, MER57 and MER58B.  相似文献   

7.
8.
9.
10.
Mouse X chromosome inactivation center contains the DXPas34 minisatellite locus which plays an important role in expression regulation of the Tsix and Xist genes, involved into female dosage compensation. Comparative analysis of the DXPas34 locus from mouse, rat, and four common vole species revealed similar organization of this region in the form of tandem repeat blocks. A search for functionally important elements in this locus showed that all the species examined carried the conservative motif monomers, which could be involved in regulation of X inactivation.  相似文献   

11.
12.
Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unknown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that these deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism.  相似文献   

13.
This study aims to represent the first report on population variation of 20 non-metric skull characters in East European vole (Microtus levis) from the Balkan (populations from Northern Dobruja; Southern Dobruja; East part of the Danube Plain; North-east Trace; Sofia field; South-east Trace) and Anatolian peninsulas (populations from North-west Anatolia region and Central Anatolia region), on the basis of which to determine its epigenetic variability and to analyse their mutual geographical epigenetic relations through comparison of the epigenetic divergence among them. Estimation of epigenetic variation of the studied populations of M. levis showed similar pattern of variation, but it is mostly higher than the other rodent species with a similar range of distribution, such as Microtus arvalis, Mus musculus, Apodemus sylvaticus, Apodemus flavicollis and Clethrionomys glareolus. Each one of the studied traits manifested some polymorphism. Moreover, all the calculated epigenetic distances (MMD) were statistically insignificant (P < 0.05) and epigenetic cranial uniqueness (MU) of any studied population was not found. These results reveal lack of expressed geographic relationship of population epigenetic variability in East European vole. The revealed populations epigenetic polymorphism of M. levis gives an opportunity for more complete assessment of variability and biological diversity of this species, but further research is necessary to elucidate its population epigenetics, especially as the data obtained in recent investigations of cranial morphology of the sibling species from the group the M. arvalis (sensu lato) added new locations to the distribution map of the East European vole in Eurasia.  相似文献   

14.
Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.  相似文献   

15.
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.  相似文献   

16.
17.
18.
Observations made with Escherichia coli have suggested that a lag between replication and methylation regulates initiation of replication. To address the question of whether a similar mechanism operates in mammalian cells, we have determined the temporal relationship between initiation of replication and methylation in mammalian cells both at a comprehensive level and at specific sites. First, newly synthesized DNA containing origins of replication was isolated from primate-transformed and primary cell lines (HeLa cells, primary human fibroblasts, African green monkey kidney fibroblasts [CV-1], and primary African green monkey kidney cells) by the nascent-strand extrusion method followed by sucrose gradient sedimentation. By a modified nearest-neighbor analysis, the levels of cytosine methylation residing in all four possible dinucleotide sequences of both nascent and genomic DNAs were determined. The levels of cytosine methylation observed in the nascent and genomic DNAs were equivalent, suggesting that DNA replication and methylation are concomitant events. Okazaki fragments were also demonstrated to be methylated, suggesting that the rapid kinetics of methylation is a feature of both the leading and the lagging strands of nascent DNA. However, in contrast to previous observations, neither nascent nor genomic DNA contained detectable levels of methylated cytosines at dinucleotide contexts other than CpG (i.e., CpA, CpC, and CpT are not methylated). The nearest-neighbor analysis also shows that cancer cell lines are hypermethylated in both nascent and genomic DNAs relative to the primary cell lines. The extent of methylation in nascent and genomic DNAs at specific sites was determined as well by bisulfite mapping of CpG sites at the lamin B2, c-myc, and β-globin origins of replication. The methylation patterns of genomic and nascent clones are the same, confirming the hypothesis that methylation occurs concurrently with replication. Interestingly, the c-myc origin was found to be unmethylated in all clones tested. These results show that, like genes, different origins of replication exhibit different patterns of methylation. In summary, our results demonstrate tight coordination of DNA methylation and replication, which is consistent with recent observations showing that DNA methyltransferase is associated with proliferating cell nuclear antigen in the replication fork.  相似文献   

19.
The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle.  相似文献   

20.
Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identified as a genome-wide regulator of replication timing in fission yeast and in mammalian cells. However, previous studies in budding yeast have suggested that Rif1’s role in controlling replication timing may be limited to subtelomeric domains and derives from its established role in telomere length regulation. We have analyzed replication timing by analyzing BrdU incorporation genome-wide, and report that Rif1 regulates the timing of late/dormant replication origins throughout the S. cerevisiae genome. Analysis of pfa4Δ cells, which are defective in palmitoylation and membrane association of Rif1, suggests that replication timing regulation by Rif1 is independent of its role in localizing telomeres to the nuclear periphery. Intra-S checkpoint signaling is intact in rif1Δ cells, and checkpoint-defective mec1Δ cells do not comparably deregulate replication timing, together indicating that Rif1 regulates replication timing through a mechanism independent of this checkpoint. Our results indicate that the Rif1 mechanism regulates origin timing irrespective of proximity to a chromosome end, and suggest instead that telomere sequences merely provide abundant binding sites for proteins that recruit Rif1. Still, the abundance of Rif1 binding in telomeric domains may facilitate Rif1-mediated repression of non-telomeric origins that are more distal from centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号