首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The fungal concentration and flora in indoor and outdoor air in Yokohama, Japan were analyzed with a Reuter centrifugal air sampler and dichloran 18% glycerol agar (DG18), and compared with the levels assessed with potato dextrose agar (PDA). The number of fungal colony-forming units (CFU) in outdoor air was < 13–2750/m3; Cladosporium spp. predominated, followed by Alternaria spp. and Penicillium spp. The fungal concentration in outdoor air peaked in September. The concentrations of fungi in outdoor air (n = 288) were significantly correlated with the maximum temperature of the day, minimum temperature of the day, average temperature of the day, average velocity of wind of the day, average temperature of the month, average relative humidity of the month and precipitation of the month. In indoor air, the fungal CFU was < 13–3750/m3. Cladosporium spp. predominated, followed by the xerophilic fungi such as the Aspergillus restrictus group, Wallemia sebi, the A. glaucus group, and Penicillium spp. The fungal concentration in indoor air peaked in October. The concentrations of fungi in indoor air (n = 288) were significantly correlated with the indoor temperature, indoor relative humidity and the outdoor climatic factors mentioned above, except for the average velocity of wind of the day. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.  相似文献   

4.

Background

Source identification in areas with outbreaks of airborne pathogens is often time-consuming and expensive. We developed a model to identify the most likely location of sources of airborne pathogens.

Methods

As a case study, we retrospectively analyzed three Q fever outbreaks in the Netherlands in 2009, each with suspected exposure from a single large dairy goat farm. Model input consisted only of case residential addresses, day of first clinical symptoms, and human population density data. We defined a spatial grid and fitted an exponentially declining function to the incidence-distance data of each grid point. For any grid point with a fit significant at the 95% confidence level, we calculated a measure of risk. For validation, we used results from abortion notifications, voluntary (2008) and mandatory (2009) bulk tank milk sampling at large (i.e. >50 goats and/or sheep) dairy farms, and non-systematic vaginal swab sampling at large and small dairy and non-dairy goat/sheep farms. In addition, we performed a two-source simulation study.

Results

Hotspots – areas most likely to contain the actual source – were identified at early outbreak stages, based on the earliest 2–10% of the case notifications. Distances between the hotspots and suspected goat farms varied from 300–1500 m. In regional likelihood rankings including all large dairy farms, the suspected goat farms consistently ranked first. The two-source simulation study showed that detection of sources is most clear if the distance between the sources is either relatively small or relatively large.

Conclusions

Our model identifies the most likely location of sources in an airborne pathogen outbreak area, even at early stages. It can help to reduce the number of potential sources to be investigated by microbial testing and to allow rapid implementation of interventions to limit the number of human infections and to reduce the risk of source-to-source transmission.  相似文献   

5.
The recent review of the National Ambient Air Quality Standard for particuslate matter and the resultant new health-based PM2.5 standard was in part motivated by findings from epidemiological studies. These studies reported significant associations between adverse health effects and concentrations of ambient particulate matter at levels below the previously existing PM10 standard. Interpretation of these results has been hindered by our relatively poor understanding of the relationship between personal exposures and concentrations in the indoor and outdoor environments. Individuals spend the majority of their time in indoor environments. Therefore, it is important to understand where and how they may be exposed to the contaminants which may be causing the health effects, and which activities place them at a higher risk of exposure to these agents. In addition, since particulate matter is a complex mixture of contaminants, further research is required to examine its formation process, sources, composition, and health effects. Without an improved scientific understanding of these issues, it is difficult to assess whether the new PM2.5 standard will be implemented, and if so, whether it can be adequately protective of public health.  相似文献   

6.
Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m3 over young corn and wet soil to 663 colony-forming units per m3 over dry soil and 6,500 colony-forming units per m3 over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.  相似文献   

7.
China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.  相似文献   

8.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

9.
采用曝皿法(孟加拉红培养基)连续12个月对哈尔滨市实验林场、东北林业大学家属区和哈尔滨市二环路、兴路区间3个地点的空气真菌进行取样,初步确定了哈尔滨市室外空气真菌的种类及其动态变化。试验共得到9 908个真菌菌落,经鉴定为22属(或群)49种。试验结果表明:室外空气真菌的优势菌属依次为枝孢属、链格孢、曲霉属、青霉属、附球菌属、木霉属和无孢菌群,分别占总菌落数的21.54%、15.16%1、4.70%、12.20%、11.35%、7.86%和7.80%;室外空气真菌的种类在一天中基本没有变化,但菌落的数量有一定变化,总菌落数从早至晚也逐渐增加;不同季节室外真菌的种类和菌落数有明显变化,秋季最多,冬季最少;不同采样地点的空气真菌的种类变化不大,但菌落数量有差异,菌落数量依次为公路林场家属区。  相似文献   

10.
We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.  相似文献   

11.
Significant media and regulatory attention has been given to hazardous waste sites and to the remediation of such sites to protect nearby building occupants. Soil vapor intrusion (SVI) can be a major factor contributing to increased occupant expo sure to chemicals. However, there are many possible sources of indoor air pollution, thus complicating routine assessments. The intent of this paper is to provide an overview of the state of understanding related to chemical fate in the indoor environment. A generalized model is presented in the form of an ordinary differential equation that includes several terms that are not commonly accounted for in models involving the effects of SVI in indoor air. In addition to soil vapor intrusion several other sources of indoor contamination are described. Typical air exchange rates for residential dwellings are presented. Finally, recent findings related to the sorptive interactions between indoor air pollutants and indoor materials, as well as homogeneous and heterogeneous chemical reactions that can affect indoor air pollutants are described.  相似文献   

12.
US EPA and many state regulatory agency guidance documents recommend below-foundation vapor sampling as a key element of site investigations to determine if vapor migration from underlying soil into buildings is a completed exposure pathway (USEPA, 2002 US EPA (U.S. Environmental Protection Agency). Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). November2002.  [Google Scholar]; WIDHFS, 2003 WIDHFS (Wisconsin Department of Health and Family Services). Chemical Vapor Intrusion and Residential Indoor Air, Guidance for Environmental Consultants and Contractors. June202004. Available at http://dhfs.wisconsin.gov/eh/Air/fs/VI_prof.htm (accessed) [Google Scholar]; San Diego County, 2004 San Diego County Department of Environmental Health. Site Assessment and Mitigation (SAM) Manual. June202004. http://www.sdcounty.ca.gov/deh/lwq/sam/vapor_risk_assessment_2000.html (accessed) [Google Scholar]; PADEP, 2004 PADEP (Pennsylvania Department of Environmental Protection). Land Recycling Program Technical Guidance Manual-Section IV.A.4. June202004. Vapor Intrusion into Buildings from Groundwater and Soil under Act 2 Statewide Health Standard. Document Number 253-0300-100. http://www.dep.state.pa.us/eps/default.asp (accessed) [Google Scholar]). If volatile organic compounds (VOCs) are detected below the building foundation, then VOC migration from the subsurface is assumed to be occurring, and further investigation is needed to determine the extent of the VOC impact. These guidance documents are predicated on the assumption that VOCs detected in below-foundation samples have originated from deeper within the subsurface. However, detection of VOCs in below-foundation vapor samples alone is not sufficient to conclude that the VOCs are migrating from the subsurface upward towards a building. VOCs detected in below-foundation vapor samples can originate from indoor sources, migrating down through the slab by diffusion or advection. Commonly referenced conceptual models for vapor intrusion address VOC migration from the subsurface into buildings but do not consider the potential for VOC migration from buildings into the subsurface (USEPA, 2002 US EPA (U.S. Environmental Protection Agency). Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). November2002.  [Google Scholar]; Johnson and Ettinger, 1991 Johnson, P. C. and Ettinger, R. A. 1991. Heuristic model for the intrusion rate of contaminant vapors into buildings. Environ. Sci. Technol., 25(8): 14451452. [CSA][CROSSREF][Crossref], [Web of Science ®] [Google Scholar]; Parker, 2003 Parker, J. C. 2003. Modeling volatile chemical transport, biodecay, and emission to indoor air. Ground Water Mon. Remed., 23(1): 107120. [CSA][Crossref], [Web of Science ®] [Google Scholar]). The advective and diffusive forces that lead to the migration of VOCs from the subsurface into buildings are equally likely to result in the migration of VOCs from buildings into the subsurface when pressure or concentration gradients support such migration. In this paper we present: i) pressure gradient measurements indicating bi-directional advective flow across building foundations, ii) simple modeling indicating that indoor sources of VOCs may cause subsurface impacts through advection across the building foundation, and iii) field data from a site where indoor sources rather than subsurface contamination were the source of VOCs detected in below-foundation vapor samples.  相似文献   

13.
Airborne microorganisms have significant effects on human health, and children are more vulnerable to pathogens and allergens than adults. However, little is known about the microbial communities in the air of childcare facilities. Here, we analyzed the bacterial and fungal communities in 50 air samples collected from five daycare centers and five elementary schools located in Seoul, Korea using culture-independent high-throughput pyrosequencing. The microbial communities contained a wide variety of taxa not previously identified in child daycare centers and schools. Moreover, the dominant species differed from those reported in previous studies using culture-dependent methods. The well-known fungi detected in previous culture-based studies (Alternaria, Aspergillus, Penicillium, and Cladosporium) represented less than 12% of the total sequence reads. The composition of the fungal and bacterial communities in the indoor air differed greatly with regard to the source of the microorganisms. The bacterial community in the indoor air appeared to contain diverse bacteria associated with both humans and the outside environment. In contrast, the fungal community was largely derived from the surrounding outdoor environment and not from human activity. The profile of the microorganisms in bioaerosols identified in this study provides the fundamental knowledge needed to develop public health policies regarding the monitoring and management of indoor air quality.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4–6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR) and hierarchical clustering analysis (HCA) were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR) due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10−6, 5.00×10−6, 3.08×10−6, 6.02×10−6 for children and 5.92×10−6, 4.83×10−6, 2.97×10−6, 5.81×10−6 for adults, respectively.  相似文献   

15.

Background

Tuberculosis is endemic in Cape Town, South Africa where a majority of the population become tuberculosis infected before adulthood. While social contact patterns impacting tuberculosis and other respiratory disease spread have been studied, the environmental determinants driving airborne transmission have not been quantified.

Methods

Indoor carbon dioxide levels above outdoor levels reflect the balance of exhaled breath by room occupants and ventilation. We developed a portable monitor to continuously sample carbon dioxide levels, which were combined with social contact diary records to estimate daily rebreathed litres. A pilot study established the practicality of monitor use up to 48-hours. We then estimated the daily volumes of air rebreathed by adolescents living in a crowded township.

Results

One hundred eight daily records were obtained from 63 adolescents aged between 12- and 20-years. Forty-five lived in wooden shacks and 18 in brick-built homes with a median household of 4 members (range 2–9). Mean daily volume of rebreathed air was 120.6 (standard error: 8.0) litres/day, with location contributions from household (48%), school (44%), visited households (4%), transport (0.5%) and other locations (3.4%). Independent predictors of daily rebreathed volumes included household type (p = 0.002), number of household occupants (p = 0.021), number of sleeping space occupants (p = 0.022) and winter season (p<0.001).

Conclusions

We demonstrated the practical measurement of carbon dioxide levels to which individuals are exposed in a sequence of non-steady state indoor environments. A novel metric of rebreathed air volume reflects social and environmental factors associated with airborne infection and can identify locations with high transmission potential.  相似文献   

16.
Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants'' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.  相似文献   

17.
18.
We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2) concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p<0.01) higher for nonwhites than for whites. The environmental health implications of that concentration disparity are compelling. For example, we estimate that reducing nonwhites’ NO2 concentrations to levels experienced by whites would reduce Ischemic Heart Disease (IHD) mortality by ∼7,000 deaths per year, which is equivalent to 16 million people increasing their physical activity level from inactive (0 hours/week of physical activity) to sufficiently active (>2.5 hours/week of physical activity). Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08). Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile) for outdoor residential NO2 include New York, Michigan, and Wisconsin.  相似文献   

19.
We present three experiments on horizon estimation. In Experiment 1 we verify the human ability to estimate the horizon in static images from only visual input. Estimates are given without time constraints with emphasis on precision. The resulting estimates are used as baseline to evaluate horizon estimates from early visual processes. Stimuli are presented for only ms and then masked to purge visual short-term memory and enforcing estimates to rely on early processes, only. The high agreement between estimates and the lack of a training effect shows that enough information about viewpoint is extracted in the first few hundred milliseconds to make accurate horizon estimation possible. In Experiment 3 we investigate several strategies to estimate the horizon in the computer and compare human with machine “behavior” for different image manipulations and image scene types.  相似文献   

20.
- Part 1: Characterisation factors (DOI: http://dx.doi.org/10.1065/lca2004.12.194.1) Part 2: Damage scores (DOI: http://dx.doi.org/10.1065/lca2004.12.194.2) - Preamble. In this series of two papers, a methodology to calculate damages to human health caused by indoor emissions from building materials is presented and applied. Part 1 presents the theoretical foundation of the indoor emission methodology developed, as well as characterisation factors calculated for 36 organic compounds, radon and gamma radiation. Part 2 calculates damage scores of building materials with the characterisation factors presented in part 1. The relevancy of including indoor air emission in the full damage scores at a material level and a dwelling level is also quantified and discussed. Goal, Scope and Background Methodologies based on life cycle assessment have been developed to calculate the environmental impact of dwellings. Human health damage due to exposure to substances emitted to indoor air are not included in these methodologies. In order to compare this damage with human health damages associated with the rest of the life cycle of the dwelling, a methodology has been developed to calculate damages to human health caused by pollutants emitted from building materials. Methods Fate, exposure and health effects are addressed in the calculation procedure. The methodology is suitable for organic substances, radon and elements emitting gamma radiation. The (Dutch reference) dwelling used in the calculation was divided in three compartments: crawl space, first floor and second floor. Fate factors have been calculated based on indoor and outdoor intake fractions, dose conversion factors or extrapolation from measurements. Effect factors have been calculated based on unit risk factors, (extrapolated) effect doses or linear relationship between dose and cancer cases. Damage factors are based on disability adjusted life years (DALYs). Results and Discussion Characterisation factors have been calculated for 36 organic compounds, radon and gamma radiation emitted by building materials applied in a Dutch reference dwelling. For organic compounds and radon, the characterisation factors of emissions to the second floor are 10–20% higher than the characterisation factors of emissions to the first floor. For the first and second floor, the characterisation factors are dominated by damage to human health as a result of indoor exposure. The relative contribution of carcinogenic and non-carcinogenic effects to the characterisation factors is generally within one order of magnitude, and up to three orders of magnitude for formaldehyde. Conclusion Health effects due to indoor exposure to pollutants emitted from building materials appear to be dominant in the characterisation factors over outdoor exposure to such pollutants. The health effects of emissions of organic compounds and gamma radiation in the crawl space are very small compared to the health effects of emissions into the other compartments. Using the characterisation factors calculated in this study, it is possible to calculate the human health damage due to emissions of substances and radiation emitted to indoor air and compare this damage with damages to human health associated with the rest of the life cycle of the material. This is the subject of part II of this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号