首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gender Medicine》2012,9(1):21-32
BackgroundSex differences in the expression of the angiotensin (Ang) II receptors and angiotensin-converting enzyme 2 (ACE2) have been hypothesized to be a potential mechanism contributing to sex-specific differences in arterial pressure. Currently, sex differences in the expression of the angiotensin receptors and ACE2 remain undefined.ObjectivesThe aim of this study was to define the postnatal ontogeny of mRNA expression, from birth to adulthood, of the Ang II and Ang-(1-7) receptors and ACE2 in male and female rats.MethodsKidney and heart tissue was collected from male and female Sprague Dawley rats and snap-frozen at postnatal days (PNDs) 1, 30, 42, 70, and 110 (adult), and real-time polymerase chain reaction was performed to determine relative expression of the Ang II and Ang-(1-7) receptors (AT1aR, AT1bR, AT2R, and MasR) and ACE2.ResultsAll these components of the renin-angiotensin system (RAS) were detected in the kidney and left ventricle, although expression levels differed significantly between the sexes and across organs. Gene expression of most components of the RAS was high at birth and decreased with age in both sexes, except for ACE2 expression, which increased in the left ventricle with age (PAge < 0.001). Low levels of AT2R were observed in the ventricles in both sexes as adults. Most notably, AT2R expression was greatest in female kidneys and lowest in male kidneys compared with the left ventricle (PAge*Sex < 0.05). Interestingly, MasR expression in the female kidney was similar to the level of AT2R expression. Left ventricular MasR expression was greater than AT2R expression in both sexes but was not different between the sexes. The highest level of ACE2 expression was observed in adult female kidneys (PAS < 0.05).ConclusionsThe enhanced mRNA expression of the vasodilatory arm of the renal RAS (ACE2, AT2R) in females observed in the present study may contribute to sex differences in the regulation of arterial pressure and the incidence of cardiovascular disease in women.  相似文献   

2.
Objective: Pleural effusion is common problem, but the rapid and reliable diagnosis for specific pathogenic effusions are lacking. This study aimed to identify the diagnosis based on clinical variables to differentiate pleural tuberculous exudates from other pleural effusions. We also investigated the role of renin-angiotensin system (RAS) and matrix metalloproteinase (MMPs) in the pathogenesis of pleural exudates.Experimental design: The major components in RAS and extracellular matrix metabolism, including angiotensin converting enzyme (ACE), ACE2, MMP-2 and MMP-9 activities, were measured and compared in the patients with transudative (n = 45) and exudative (n = 80) effusions. The exudative effusions were come from the patients with tuberculosis (n = 20), pneumonia (n = 32), and adenocarcinoma (n = 28).Results: Increased ACE and equivalent ACE2 activities, resulting in a significantly increased ACE/ACE2 ratio in exudates, were detected compared to these values in transudates. MMP-9 activity in exudates was significantly higher than that in transudates. The significant correlation between ACE and ACE2 activity that was found in transudates was not found in exudates. Advanced analyses showed significantly increased ACE and MMP-9 activities, and decreased ACE2 activity in tuberculous pleural effusions compared with those in pneumonia and adenocarcinoma effusions. The results indicate that increased ACE and MMP-9 activities found in the exudates were mainly contributed from a higher level of both enzyme activities in the tuberculous pleural effusions.Conclusion: Interplay between ACE and ACE2, essential functions in the RAS, and abnormal regulation of MMP-9 probably play a pivotal role in the development of exudative effusions. Moreover, the ACE/ACE2 ratio combined with MMP-9 activity in pleural fluid may be potential biomarkers for diagnosing tuberculous pleurisy.  相似文献   

3.
Adipose tissue expresses components of the renin-angiotensin system (RAS). Angiotensin converting enzyme (ACE2), a new component of the RAS, catabolizes the vasoconstrictor peptide ANG II to form the vasodilator angiotensin 1-7 [ANG-(1-7)]. We examined whether adipocytes express ACE2 and its regulation by manipulation of the RAS and by high-fat (HF) feeding. ACE2 mRNA expression increased (threefold) during differentiation of 3T3-L1 adipocytes and was not regulated by manipulation of the RAS. Male C57BL/6 mice were fed low- (LF) or high-fat (HF) diets for 1 wk or 4 mo. At 1 wk of HF feeding, adipose expression of angiotensinogen (twofold) and ACE2 (threefold) increased, but systemic angiotensin peptide concentrations and blood pressure were not altered. At 4 mo of HF feeding, adipose mRNA expression of angiotensinogen (twofold) and ACE2 (threefold) continued to be elevated, and liver angiotensinogen expression increased (twofold). However, adipose tissue from HF mice did not exhibit elevated ACE2 protein or activity. Increased expression of ADAM17, a protease responsible for ACE2 shedding, coincided with reductions in ACE2 activity in 3T3-L1 adipocytes, and an ADAM17 inhibitor decreased media ACE2 activity. Moreover, ADAM17 mRNA expression was increased in adipose tissue from 4-mo HF-fed mice, and plasma ACE2 activity increased. However, HF mice exhibited marked increases in plasma angiotensin peptide concentrations (LF: 2,141 +/- 253; HF: 6,829 +/- 1,075 pg/ml) and elevated blood pressure. These results demonstrate that adipocytes express ACE2 that is dysregulated in HF-fed mice with elevated blood pressure compared with LF controls.  相似文献   

4.
Angiotensin-converting enzyme-2 (ACE2) is a homologue of angiotensin-I converting enzyme (ACE), the central enzyme of the renin-angiotensin system (RAS). ACE2 is abundant in human kidney and heart and has been implicated in renal and cardiac function through its ability to hydrolyze Angiotensin II. Although ACE2 and ACE are both type I integral membrane proteins and share 61% protein sequence similarity, they display distinct modes of enzyme action and tissue distribution. This study characterized ACE2 at the plasma membrane of non-polarized Chinese hamster ovary (CHO) cells and polarized Madin-Darby canine kidney (MDCKII) epithelial cells and compared its cellular localization to its related enzyme, ACE, using indirect immunofluorescence, cell-surface biotinylation, Western analysis, and enzyme activity assays. This study shows ACE2 and ACE are both cell-surface proteins distributed evenly to detergent-soluble regions of the plasma membrane in CHO cells. However, in polarized MDCKII cells under steady-state conditions the two enzymes are differentially expressed. ACE2 is localized predominantly to the apical surface ( approximately 92%) where it is proteolytically cleaved within its ectodomain to release a soluble form. Comparatively, ACE is present on both the apical ( approximately 55%) and basolateral membranes ( approximately 45%) where it is also secreted but differentially; the ectodomain cleavage of ACE is 2.5-fold greater from the apical surface than the basolateral surface. These studies suggest that both ACE2 and ACE are ectoenzymes that have distinct localization and secretion patterns that determine their role on the cell surface in kidney epithelium and in urine.  相似文献   

5.
In contrast to the relatively ubiquitous angiotensin-converting enzyme (ACE), expression of the mammalian ACE homologue, ACE2, was initially described in the heart, kidney and testis. ACE2 is a type I integral membrane protein with its active site domain exposed to the extracellular surface of endothelial cells and the renal tubular epithelium. Here ACE2 is poised to metabolise circulating peptides which may include angiotensin II, a potent vasoconstrictor and the product of angiotensin I cleavage by ACE. To this end, ACE2 may counterbalance the effects of ACE within the renin-angiotensin system (RAS). Indeed, ACE2 has been implicated in the regulation of heart and renal function where it is proposed to control the levels of angiotensin II relative to its hypotensive metabolite, angiotensin-(1-7). The recent solution of the structure of ACE2, and ACE, has provided new insight into the substrate and inhibitor profiles of these two key regulators of the RAS. As the complexity of this crucial pathway is unravelled, there is a growing interest in the therapeutic potential of agents that modulate the activity of ACE2.  相似文献   

6.

Objective

Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain.

Methods

The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured.

Results

The resting HR decreased (∼12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p<0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups.

Conclusion

Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.  相似文献   

7.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

8.
Angiotensin converting enzyme 2 (ACE2) is a component of the renin-angiotensin system (RAS) which converts Ang II, a potent vasoconstrictor peptide into Ang 1-7, a vasodilator peptide which may act as a negative feedback hormone to the actions of Ang II. The discovery of this enzyme added a new level of complexity to this system. The mesangial cells (MC) have multiple functions in glomerular physiology and pathophysiology and are able to express all components of the RAS. Despite of being localized in these cells, ACE2 has not yet been purified or characterized. In this study ACE2 from mice immortalized MC (IMC) was purified by ion-exchange chromatography. The purified enzyme was identified as a single band around 60-70 kDa on SDS-polyacrylamide gel and by Western blotting using a specific antibody. The optima pH and chloride concentrations were 7.5 and 200 mM, respectively. The N-terminal sequence was homologous with many species ACE2 N-terminal sequences as described in the literature. ACE2 purified from IMC was able to hydrolyze Ang II into Ang 1-7 and the Km value for Ang II was determined to be 2.87 ± 0.76 μM. In conclusion, we purified and localized, for the first time, ACE2 in MC, which was able to generate Ang 1-7 from Ang II. Ang 1-7 production associated to Ang II degradation by ACE2 may exert a protective effect in the renal hemodynamic.  相似文献   

9.
10.
BackgroundAccumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury.ObjectiveThe objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection.MethodsIsolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels.ResultsCardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway.ConclusionsThis study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.  相似文献   

11.
The concept of a local bone marrow renin-angiotensin system (RAS) has been introduced and accumulating evidence suggests that the local RAS is actively involved in hematopoiesis. Angiotensin converting enzyme (ACE) is a key player in the RAS and makes the final effector angiotensin II. Besides angiotensin II, ACE also regulates a panel of bioactive peptides, such as substance P, Ac-SDKP and angiotensin 1–7. These peptides have also been individually reported in the regulation of pathways of hematopoiesis. In this setting, an ACE-regulated peptide network orchestrating hematopoiesis has emerged. Here, we focus on this peptide network and discuss the roles of ACE and its peptides in aspects of hematopoiesis. Special attention is given to the recent revelation that ACE is a bona fide marker of hematopoietic stem cells.Key words: hematopoiesis, myelopoiesis, angiotensin converting enzyme (ACE), angiotensin II, AT1 receptor, renin-angiotensin system (RAS), substance P, Ac-SDKP, angiotensin 1–7  相似文献   

12.
In the brain, ouabain-like compounds (OLC) and the reninangiotensin system (RAS) contribute to sympathetic hyperactivity in rats after myocardial infarction (MI). This study aimed to evaluate changes in components of the central vs. the peripheral RAS. Angiotensin-converting enzyme (ACE) and angiotensin type 1 (AT1) receptor binding densities were determined by measuring 125I-labeled 351A and 125I-labeled ANG II binding 4 and 8 wk after MI. In the brain, ACE and AT1 receptor binding increased 8-15% in the subfornical organ, 14-22% in the organum vasculosum laminae terminalis, 20-34% in the paraventricular nucleus, and 13-15% in the median preoptic nucleus. In the heart, the greatest increase in ACE and AT1 receptor binding occurred at the infarct scar (approximately 10-fold) and the least in the right ventricle (2-fold). In kidneys, ACE and AT1 receptor binding decreased 10-15%. After intracerebroventricular infusion of Fab fragments to block brain OLC from 0.5 to 4 wk after MI, increases in ACE and AT1 receptors in the subfornical organ, organum vasculosum laminae terminalis, paraventricular nucleus, and medial preoptic nucleus were markedly inhibited, and ACE and AT1 receptor densities in the heart increased less (6-fold in the infarct scar). In kidneys, decreases in ACE and AT1 receptor binding were absent after treatment with Fab fragments. These results demonstrate that ACE and AT1 receptor binding densities increase not only in the heart but also in relevant areas of the brain of rats after MI. Brain OLC appears to play a major role in activation of brain RAS in rats after MI and, to a modest degree, in activation of the cardiac RAS.  相似文献   

13.
Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. However, the relationship between ACE2 and MMPs activation in lung injury is still largely unclear. The purpose of this study is to investigate whether MMPs activity could be affected by ACE2 and which ACE2 derived signaling pathways could be also involved via using a mouse model with lung injury induced by cigarette smoke (CS) exposure for 1 to 3 weeks. Wild-type (WT; C57BL/6) and ACE2 KO mice (ACE2-/-) were utilized to study CS-induced lung injury. Increases in the resting respiratory rate (RRR), pulmonary immunokines, leukocyte infiltration and bronchial hyperplasia were observed in the CS-exposed mice. Compared to WT mice, more serious physiopathological changes were found in ACE2-/- mice in the first week of CS exposure. CS exposure increased pulmonary ACE and ACE2 activities in WT mice, and significantly increased ACE in ACE2-/- mice. Furthermore, the activity of pulmonary MMPs was decreased in CS-exposed WT mice, whereas this activity was increased in ACE2-/- mice. CS exposure increased the pulmonary p-p38, p-JNK and p-ERK1/2 level in all mice. In ACE2-/- mice, a significant increase p-STAT3 signaling was detected; however, no effect was observed on the p-STAT3 level in WT mice. Our results support the hypothesis that ACE2 deficiency influences MMPs activation and STAT3 phosphorylation signaling to promote more pulmonary inflammation in the development of lung injury.  相似文献   

14.
Hypertension afflicts over 65 million Americans and poses an increased risk for cardiovascular morbidity such as stroke, myocardial infarction and end-stage renal disease resulting in significant mortality. Overactivity of the renin-angiotensin system (RAS) has been identified as an important determinant that is implicated in the etiology of these diseases and therefore represents a major target for therapy. In spite of the successes of drugs inhibiting various elements of the RAS, the incidence of hypertension and cardiovascular diseases remain steadily on the rise. This has lead many investigators to seek novel and innovative approaches, taking advantage of new pathways and technologies, for the control and possibly the cure of hypertension and related pathologies. The main objective of this review is to forward the concept that gene therapy and the genetic targeting of the RAS is the future avenue for the successful control and treatment of hypertension and cardiovascular diseases. We will present argument that genetic targeting of angiotensin-converting enzyme 2 (ACE2), a newly discovered member of the RAS, is ideally poised for this purpose. This will be accomplished by discussion of the following: (i) summary of our current understanding of the RAS with a focus on the systemic versus tissue counterparts as they relate to hypertension and other cardiovascular pathologies; (ii) the newly discovered ACE2 enzyme with its physiological and pathophysiological implications; (iii) summary of the current antihypertensive pharmacotherapy and its limitations; (iv) the discovery and design of ACE inhibitors; (v) the emerging concepts for ACE2 drug design; (vi) the current status of genetic targeting of the RAS; (vii) the potential of ACE2 as a therapeutic target for hypertension and cardiovascular disease treatment; and (viii) future perspectives for the treatment of cardiovascular diseases.  相似文献   

15.
血管紧张素转换酶2(angiotensin—converting enzyme 2,ACE2)是新发现的与血管紧张素转换酶(ACE)相关的羧肽酶,在肾素-血管紧张素系统(rennin-angiotensin system,RAS)中ACE2可以使AngⅡ转换为Ang1-7,从而产生与血管紧张素Ⅱ相反的效应,同时ACE2还可使Ang I转换为Ang1-9。研究发现:ACE2与高血压、SARS以及肾脏、生殖等系统的疾病有着密切的关系。  相似文献   

16.
The excitotoxicity of glutamate plays an important role in the progression of various neurological disorders via participating in inflammation and neuronal damage. In this study, we identified the role of excessive glutamate stimulation in the modulation of angiotensin-converting enzyme type 2 (ACE2), a critical component in the compensatory axis of the renin–angiotensin system (RAS). In primary cultured cortical neurons, high concentration of glutamate (100 µM) significantly reduced the enzymatic activity of ACE2. The elevated activity of ADAM17, a member of the ‘A Disintegrin And Metalloprotease’ (ADAM) family, was found to contribute to this glutamate-induced ACE2 down-regulation. The decrease of ACE2 activity could be prevented by pre-treatment with antagonists targeting ionotropic glutamate receptors. In addition, the glutamate-induced decrease in ACE2 activity was significantly attenuated when the neurons were co-treated with MitoTEMPOL or blockers that target oxidative stress-mediated signaling pathway. In summary, our study reveals a strong relationship between excessive glutamate stimulation and ADAM17-mediated impairment in ACE2 activity, suggesting a possible cross-talk between glutamate-induced excitotoxicity and dysregulated RAS.  相似文献   

17.
We examined the impact of early diabetes on the circulating and kidney renin-angiotensin system (RAS) in male and female mRen2.Lewis (mRen2) hypertensive rats. Diabetes (DB) was induced by streptozotocin (STZ; 65 mg/kg) at 11 wk of age for 4 wk without insulin replacement. Systolic blood pressures were not increased in DB males or females compared with controls (CON). Circulating angiotensin-converting enzyme 2 (ACE2) increased ninefold (P < 0.05) in DB females and threefold (P < 0.05) in DB males, but circulating ACE and ANG II were higher in the DB groups. Serum C-reactive protein was elevated in DB females but not DB males, and the vascular responses to acetylcholine and estradiol were attenuated in the DB females. Proteinuria, albuminuria, and angiotensinogen excretion increased to a similar extent in both DB females and males. Glomerular VEGF expression also increased to a similar extent in both DB groups. Renal inflammation (CD68(+)cells) increased only in DB females although males exhibited greater inflammation that was not different with DB. Cortical ACE2 did not change in DB females but was reduced (30%) in DB males. Renal neprilysin activity (>75%, P < 0.05) was markedly reduced in the DB females to that in the DB and CON males. ACE activity was significantly lower in both female (75%, P < 0.05) and male (50%; P < 0.05) DB groups, while cortical ANG II and Ang-(1-7) levels were unchanged. In conclusion, female mRen2 rats are not protected from vascular damage, renal inflammation, and kidney injury in early STZ-induced diabetes despite a marked increase in circulating ACE2 and significantly reduced ACE within the kidney.  相似文献   

18.
血管紧张素转换酶2(ACE2)和Mas受体的发现使人们对肾素-血管紧张素(RAS)有了更全面的认识。ACE2可水解血管紧张素Ⅰ和血管紧张素Ⅱ直接或间接生成血管紧张素1-7(Ang 1-7),并与高血压的形成密切相关。Ang 1-7主要通过Mas受体引起血管舒张、抑制细胞增殖。ACE2-Ang1-7-Mas轴的发现为RAS的研究、高血压等心血管疾病的防治和新药开发提供了新的思路和方向。  相似文献   

19.
Angiotensin-converting enzyme 2 (ACE2) preferentially forms angiotensin-(1-7) [ANG-(1-7)] from ANG II. We showed that cardiac ACE2 is elevated following treatment of coronary artery-ligated rats with AT1 receptor blockers (ARBs). Cardiac myocytes and fibroblasts were isolated from neonatal rats to determine the molecular mechanisms for the ACE2 upregulation by ARB treatment. ANG II significantly reduced ACE2 activity and downregulated ACE2 mRNA in cardiac myocytes, effects blocked by the ARB losartan, indicating that ANG II regulates ACE2. ANG II also reduced ACE2 mRNA in cardiac fibroblasts; however, no enzyme activity was detected, reflecting the limited expression of ACE2 in these cells. Endothelin-1 (ET-1) also significantly reduced myocyte ACE2 mRNA. The reduction in ACE2 mRNA by ANG II or ET-1 was blocked by inhibitors of mitogen-activated protein kinase kinase 1, suggesting that ANG II or ET-1 activates extracellular signal-regulated kinase (ERK) 1/ERK2 to reduce ACE2. Although ACE2 mRNA was not affected by ANG-(1-7), both the ANG II- and ET-1-mediated reductions in ACE2 mRNA were blocked by the heptapeptide. The ANG-(1-7) modulatory effect was prevented by the ANG-(1-7) receptor antagonist [D-Ala7]-ANG-(1-7), indicating that the ANG-(1-7) response was mediated by a specific AT(1-7) receptor. Myocyte treatment with atrial natriuretic peptide (ANP) also reversed the ACE2 mRNA downregulation by ANG II or ET-1, whereas treatment with ANP alone was ineffective. These results indicate that multiple hypertrophic and anti-hypertropic peptides regulate ACE2 production in myocytes, suggesting that ACE2 expression in the heart is dependent upon the compliment and concentration of regulatory molecules.  相似文献   

20.
Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin angiotensin system (RAS) through its role to degrade angiotensin (Ang) II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE), which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx). Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day) for 2 weeks. STNx led to hypertension (P<0.01), kidney hypertrophy (P<0.001) and impaired kidney function (P<0.001) compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01), with reduced cortical and medullary ACE2 activity (P<0.05), and increased urinary ACE2 excretion (P<0.05) compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001), and negatively with creatinine clearance (P=0.04). In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01), increased cortical ACE2 mRNA (P<0.05) and increased cortical and medullary ACE2 activity (P<0.05). The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号