首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different primer pairs targeting 16S rRNA genes of significant bacterial groups, and the community composition was evaluated by comparing specific ratios of the calculated abundances. In seven of nine cases, the Firmicutes to Bacteroidetes 16S rRNA gene ratio was significantly higher in fecal samples that had been frozen compared to identical samples that had not. This effect was further supported by qPCR analysis of bacterial groups within these two phyla. The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.  相似文献   

3.
Barcoded amplicon sequencing is rapidly becoming a standard method for profiling microbial communities, including the human respiratory microbiome. While this approach has less bias than standard cultivation, several steps can introduce variation including the type of DNA extraction method used. Here we assessed five different extraction methods on pediatric bronchoalveolar lavage (BAL) samples and a mock community comprised of nine bacterial genera to determine method reproducibility and detection limits for these typically low complexity communities. Additionally, using the mock community, we were able to evaluate contamination and select a relative abundance cut-off threshold based on the geometric distribution that optimizes the trade off between detecting bona fide operational taxonomic units and filtering out spurious ones. Using this threshold, the majority of genera in the mock community were predictably detected by all extraction methods including the hard-to-lyse Gram-positive genus Staphylococcus. Differences between extraction methods were significantly greater than between technical replicates for both the mock community and BAL samples emphasizing the importance of using a standardized methodology for microbiome studies. However, regardless of method used, individual patients retained unique diagnostic profiles. Furthermore, despite being stored as raw frozen samples for over five years, community profiles from BAL samples were consistent with historical culturing results. The culture-independent profiling of these samples also identified a number of anaerobic genera that are gaining acceptance as being part of the respiratory microbiome. This study should help guide researchers to formulate sampling, extraction and analysis strategies for respiratory and other human microbiome samples.  相似文献   

4.
Infectious pathogens can disrupt the microbiome in addition to directly affecting the host. Impacts of disease may be dependent on the ability of the microbiome to recover from such disturbance, yet remarkably little is known about microbiome recovery after disease, particularly in nonhuman animals. We assessed the resilience of the amphibian skin microbial community after disturbance by the pathogen, Batrachochytrium dendrobatidis (Bd). Skin microbial communities of laboratory-reared mountain yellow-legged frogs were tracked through three experimental phases: prior to Bd infection, after Bd infection (disturbance), and after clearing Bd infection (recovery period). Bd infection disturbed microbiome composition and altered the relative abundances of several dominant bacterial taxa. After Bd infection, frogs were treated with an antifungal drug that cleared Bd infection, but this did not lead to recovery of microbiome composition (measured as Unifrac distance) or relative abundances of dominant bacterial groups. These results indicate that Bd infection can lead to an alternate stable state in the microbiome of sensitive amphibians, or that microbiome recovery is extremely slow—in either case resilience is low. Furthermore, antifungal treatment and clearance of Bd infection had the additional effect of reducing microbial community variability, which we hypothesize results from similarity across frogs in the taxa that colonize community vacancies resulting from the removal of Bd. Our results indicate that the skin microbiota of mountain yellow-legged frogs has low resilience following Bd-induced disturbance and is further altered by the process of clearing Bd infection, which may have implications for the conservation of this endangered amphibian.Subject terms: Microbial ecology, Community ecology  相似文献   

5.
The human gut harbors thousands of bacterial taxa. A profusion of metagenomic sequence data has been generated from human stool samples in the last few years, raising the question of whether more taxa remain to be identified. We assessed metagenomic data generated by the Human Microbiome Project Consortium to determine if novel taxa remain to be discovered in stool samples from healthy individuals. To do this, we established a rigorous bioinformatics pipeline that uses sequence data from multiple platforms (Illumina GAIIX and Roche 454 FLX Titanium) and approaches (whole-genome shotgun and 16S rDNA amplicons) to validate novel taxa. We applied this approach to stool samples from 11 healthy subjects collected as part of the Human Microbiome Project. We discovered several low-abundance, novel bacterial taxa, which span three major phyla in the bacterial tree of life. We determined that these taxa are present in a larger set of Human Microbiome Project subjects and are found in two sampling sites (Houston and St. Louis). We show that the number of false-positive novel sequences (primarily chimeric sequences) would have been two orders of magnitude higher than the true number of novel taxa without validation using multiple datasets, highlighting the importance of establishing rigorous standards for the identification of novel taxa in metagenomic data. The majority of novel sequences are related to the recently discovered genus Barnesiella, further encouraging efforts to characterize the members of this genus and to study their roles in the microbial communities of the gut. A better understanding of the effects of less-abundant bacteria is important as we seek to understand the complex gut microbiome in healthy individuals and link changes in the microbiome to disease.  相似文献   

6.
Chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease responsible for amphibian declines on several continents. In laboratory conditions, optimal temperatures for Bd growth and survivorship are between 17 and 25 degrees C. We investigated the effect of different storage temperatures, both in field and laboratory conditions, on detection of Bd from swabs stored for 7 d. We sampled 52 wild Litoria wilcoxii males for Bd by simultaneously running 2 cotton swabs along the skin of the frog. One group of swabs was stored in a freezer within 2 h of sampling and the other was kept in a car in an exposed environment for 7 d before being stored in the freezer. In the laboratory experiment, swabs were inoculated with zoospores of Bd and underwent one of 4 treatments: immediate DNA extraction, or storage at 27, 38 or 45 degrees C for 7 d prior to DNA extraction. Swabs from all treatments were analyzed by quantitative (real-time) PCR test. Though prevalence of Bd did not differ significantly between swabs that were frozen and those that remained in a car for 7 d (19.2 vs. 17.3%, respectively), the number of Bd zoospores detected on car swabs taken from infected frogs was, on average, 67% less than that detected on the corresponding frozen swab. In the laboratory experiment, the number of zoospore equivalents varied significantly with treatment (F(3,35) = 4.769, p = 0.007), indicating that there was reduced recovery of Bd DNA from swabs stored at higher temperatures compared with those stored at lower temperatures or processed immediately. We conclude that failure to store swabs in cool conditions can result in a significant reduction in the amount of Bd DNA detected using the PCR assay. Our results have important implications for researchers conducting field sampling of amphibians for Bd.  相似文献   

7.

Background

Understanding the normal temporal variation in the human microbiome is critical to developing treatments for putative microbiome-related afflictions such as obesity, Crohn's disease, inflammatory bowel disease and malnutrition. Sequencing and computational technologies, however, have been a limiting factor in performing dense time series analysis of the human microbiome. Here, we present the largest human microbiota time series analysis to date, covering two individuals at four body sites over 396 timepoints.

Results

We find that despite stable differences between body sites and individuals, there is pronounced variability in an individual's microbiota across months, weeks and even days. Additionally, only a small fraction of the total taxa found within a single body site appear to be present across all time points, suggesting that no core temporal microbiome exists at high abundance (although some microbes may be present but drop below the detection threshold). Many more taxa appear to be persistent but non-permanent community members.

Conclusions

DNA sequencing and computational advances described here provide the ability to go beyond infrequent snapshots of our human-associated microbial ecology to high-resolution assessments of temporal variations over protracted periods, within and between body habitats and individuals. This capacity will allow us to define normal variation and pathologic states, and assess responses to therapeutic interventions.  相似文献   

8.
GE Flores  JB Henley  N Fierer 《PloS one》2012,7(9):e44563
Since the composition of the human microbiome is highly variable both within and between individuals, researchers are increasingly reliant on high-throughput molecular approaches to identify linkages between the composition of these communities and human health. While new sequencing technologies have made it increasingly feasible to analyze large numbers of human-associated samples, the extraction of DNA from samples often remains a bottleneck in the process. Here we tested a direct PCR approach using the Extract-N-Amp Plant PCR Kit to accelerate the 16S rRNA gene-based analyses of human-associated bacterial communities, directly comparing this method to a more commonly-used approach whereby DNA is first extracted and purified from samples using a series of steps prior to PCR amplification. We used both approaches on replicate samples collected from each of five body habitats (tongue surface, feces, forehead skin, underarm skin, and forearm skin) from four individuals. With the exception of the tongue samples, there were few significant differences in the estimates of taxon richness or phylogenetic diversity obtained using the two approaches. Perhaps more importantly, there were no significant differences between the methods in their ability resolve body habitat differences or inter-individual differences in bacterial community composition and the estimates of the relative abundances of individual taxa were nearly identical with the two methods. Overall, the two methods gave very similar results and the direct PCR approach is clearly advantageous for many studies exploring the diversity and composition of human-associated bacterial communities given that large numbers of samples can be processed far more quickly and efficiently.  相似文献   

9.
Culture-independent high-throughput sequencing-based methods are widely used to study bacterial communities. Although these approaches are superior to traditional culture-based methods, they introduce bias at the experimental and bioinformatics levels. We assessed the diversity of the human salivary microbiome by pyrosequencing of the 16S rDNA V1–3 amplicons using metagenomic DNA extracted by two different protocols: a simple proteinase K digestion without a subsequent DNA clean-up step, and a bead-beating mechanical lysis protocol followed by column DNA purification. A high degree of congruence was found between the two extraction methods, most notably in regard to the microbial community composition. The results showed that for a given bioinformatics pipeline, all the taxa with an average proportion >0.12% in samples processed using one extraction method were also detected in samples extracted using the other method. The same taxa tended to be abundant and frequent for both extraction methods. The relative abundance of sequence reads assigned to the phyla Actinobacteria, Spirochaetes, TM7, Synergistetes, and Tenericutes was significantly higher in the mechanically-treated samples than in the enzymatically-treated samples, whereas the phylum Firmicutes showed the opposite pattern. No significant differences in diversity indices were found between the extraction methods, although the mechanical lysis method revealed higher operational taxonomic unit richness. Differences between the extraction procedures outweighed the variations due to the bioinformatics analysis pipelines used.  相似文献   

10.
A majority of environmental studies describe microbiomes at coarse scales of taxonomic resolution (bacterial community, phylum), ignoring key ecological knowledge gained from finer-scales and microbial indicator taxa. Here, we characterized the distribution of 940 bacterial taxa from 41 streams along an urbanization gradient (0%–83% developed watershed area) in the Raleigh-Durham area of North Carolina (USA). Using statistical approaches derived from macro-organismal ecology, we found that more bacterial taxa were classified as intolerant than as tolerant to increasing watershed urbanization (143 vs 48 OTUs), and we identified a threshold of 12.1% developed watershed area beyond which the majority of intolerant taxa were lost from streams. Two bacterial families strongly decreased with urbanization: Acidobacteriaceae (Acidobacteria) and Xanthobacteraceae (Alphaproteobacteria). Tolerant taxa were broadly distributed throughout the bacterial phylogeny, with members of the Comamonadaceae family (Betaproteobacteria) presenting the highest number of tolerant taxa. Shifts in microbial community structure were strongly correlated with a stream biotic index, based on macroinvertebrate composition, suggesting that microbial assemblages could be used to establish biotic criteria for monitoring aquatic ecosystems. In addition, our study shows that classic methods in community ecology can be applied to microbiome datasets to identify reliable microbial indicator taxa and determine the environmental constraints on individual taxa distributions along environmental gradients.  相似文献   

11.
The vertebrate gut harbors a vast community of bacterial mutualists, the composition of which is modulated by the host immune system. Many gastrointestinal (GI) diseases are expected to be associated with disruptions of host-bacterial interactions, but relatively few comprehensive studies have been reported. We have used the rhesus macaque model to investigate forces shaping GI bacterial communities. We used DNA bar coding and pyrosequencing to characterize 141,000 sequences of 16S rRNA genes obtained from 100 uncultured GI bacterial samples, allowing quantitative analysis of community composition in health and disease. Microbial communities of macaques were distinct from those of mice and humans in both abundance and types of taxa present. The macaque communities differed among samples from intestinal mucosa, colonic contents, and stool, paralleling studies of humans. Communities also differed among animals, over time within individual animals, and between males and females. To investigate changes associated with disease, samples of colonic contents taken at necropsy were compared between healthy animals and animals with colitis and undergoing antibiotic therapy. Communities from diseased and healthy animals also differed significantly in composition. This work provides comprehensive data and improved methods for studying the role of commensal microbiota in macaque models of GI diseases and provides a model for the large-scale screening of the human gut microbiome.  相似文献   

12.
Rapid advancements in sequencing technologies along with falling costs present widespread opportunities for microbiome studies across a vast and diverse array of environments. These impressive technological developments have been accompanied by a considerable growth in the number of methodological variables, including sampling, storage, DNA extraction, primer pairs, sequencing technology, chemistry version, read length, insert size, and analysis pipelines, amongst others. This increase in variability threatens to compromise both the reproducibility and the comparability of studies conducted. Here we perform the first reported study comparing both amplicon and shotgun sequencing for the three leading next-generation sequencing technologies. These were applied to six human stool samples using Illumina HiSeq, MiSeq and Ion PGM shotgun sequencing, as well as amplicon sequencing across two variable 16S rRNA gene regions. Notably, we found that the factor responsible for the greatest variance in microbiota composition was the chosen methodology rather than the natural inter-individual variance, which is commonly one of the most significant drivers in microbiome studies. Amplicon sequencing suffered from this to a large extent, and this issue was particularly apparent when the 16S rRNA V1-V2 region amplicons were sequenced with MiSeq. Somewhat surprisingly, the choice of taxonomic binning software for shotgun sequences proved to be of crucial importance with even greater discriminatory power than sequencing technology and choice of amplicon. Optimal N50 assembly values for the HiSeq was obtained for 10 million reads per sample, whereas the applied MiSeq and PGM sequencing depths proved less sufficient for shotgun sequencing of stool samples. The latter technologies, on the other hand, provide a better basis for functional gene categorisation, possibly due to their longer read lengths. Hence, in addition to highlighting methodological biases, this study demonstrates the risks associated with comparing data generated using different strategies. We also recommend that laboratories with particular interests in certain microbes should optimise their protocols to accurately detect these taxa using different techniques.  相似文献   

13.
Plants grown in distinct soils typically harbor distinct microbial communities, but the degree of the soil microbiome influence on plant microbiome assembly remains largely undetermined. We also know that the microbes associated with seeds can contribute to the plant microbiome, but the magnitude of this contribution is likely variable. We quantified the influence of soil and seed microbiomes on the bacterial community composition of seedlings by independently inoculating seeds from a single cultivar of wheat (Triticum aestivum) with 219 unique soil slurries while holding other environmental factors constant, determining the composition of the seed, soil, and seedling bacterial communities via cultivation-independent methods. Soil bacterial communities exert a strong, but variable, influence on seedling bacterial community structure, with the extent of the soil bacterial contribution dependent on the soil in question. By testing a wide range of soils, we were able to show that the specific composition of the seedling microbiome is predictable from knowing which bacterial taxa are found in soil. Although the most ubiquitous taxa associated with the seedlings were seed derived, the contributions of the seed microbiome to the seedling microbiome were variable and dependent on soil bacterial community composition. Together this work improves our predictive understanding of how the plant microbiome assembles and how the seedling microbiome could be directly or indirectly manipulated to improve plant health.Subject terms: Microbial ecology, Next-generation sequencing, Microbial ecology  相似文献   

14.
Next‐generation sequencing technologies have provided unprecedented insights into fungal diversity and ecology. However, intrinsic biases and insufficient quality control in next‐generation methods can lead to difficult‐to‐detect errors in estimating fungal community richness, distributions and composition. The aim of this study was to examine how tissue storage prior to DNA extraction, primer design and various quality‐control approaches commonly used in 454 amplicon pyrosequencing might influence ecological inferences in studies of endophytic and endolichenic fungi. We first contrast 454 data sets generated contemporaneously from subsets of the same plant and lichen tissues that were stored in CTAB buffer, dried in silica gel or freshly frozen prior to DNA extraction. We show that storage in silica gel markedly limits the recovery of sequence data and yields a small fraction of the diversity observed by the other two methods. Using lichen mycobiont sequences as internal positive controls, we next show that despite careful filtering of raw reads and utilization of current best‐practice OTU clustering methods, homopolymer errors in sequences representing rare taxa artificially increased estimates of richness c. 15‐fold in a model data set. Third, we show that inferences regarding endolichenic diversity can be improved using a novel primer that reduces amplification of the mycobiont. Together, our results provide a rationale for selecting tissue treatment regimes prior to DNA extraction, demonstrate the efficacy of reducing mycobiont amplification in studies of the fungal microbiomes of lichen thalli and highlight the difficulties in differentiating true information about fungal biodiversity from methodological artefacts.  相似文献   

15.
The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome.  相似文献   

16.
Fecal DNA-based 16S ribosomal RNA (rRNA) gene sequencing using next-generation sequencers allows us to understand the dynamic gut microbiome adaptation of animals to their specific habitats. Conventional techniques of fecal microbiome analysis have been developed within the broad contexts defined by human biology; hence, many of these techniques are not immediately applicable to wild nonhuman primates. In order to establish a standard experimental protocol for the analysis of the gut microbiomes of wild animals, we selected the Japanese macaques (Macaca fuscata yakui) on Yakushima Island. We tested different protocols for each stage of fecal sample processing: storage, DNA extraction, and choice of the sequencing region in the bacterial 16S rRNA gene. We also analyzed the gut microbiome of captive Japanese macaques as the control. The comparison of samples obtained from identical macaques but subjected to different protocols showed that the tested storage methods (RNAlater and lysis buffer) produced effectively the same composition of bacterial operational taxonomic units (OTUs) as the standard frozen storage method, although the relative abundance of each OTU was quantitatively affected. Taxonomic assignment of the detected bacterial groups was also significantly affected by the region being sequenced, indicating that sequencing regions and the corresponding polymerase chain reaction (PCR) primer pairs for the 16S rRNA gene should be carefully selected. This study improves the current standard methods for microbiome analysis in wild nonhuman primates. Japanese macaques were shown to be a suitable model for understanding microbiome adaptation to various environments.  相似文献   

17.
The various ecological habitats in the human body provide microbes a wide array of nutrient sources and survival challenges. Advances in technology such as DNA sequencing have allowed a deeper perspective into the molecular function of the human microbiota than has been achievable in the past. Here we aimed to examine the enzymes that cleave complex carbohydrates (CAZymes) in the human microbiome in order to determine (i) whether the CAZyme profiles of bacterial genomes are more similar within body sites or bacterial families and (ii) the sugar degradation and utilization capabilities of microbial communities inhabiting various human habitats. Upon examination of 493 bacterial references genomes from 12 human habitats, we found that sugar degradation capabilities of taxa are more similar to others in the same bacterial family than to those inhabiting the same habitat. Yet, the analysis of 520 metagenomic samples from five major body sites show that even when the community composition varies the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbial habitation have adapted to the local carbohydrate composition. When broad sugar utilization was compared within the five major body sites, the gastrointestinal track contained the highest potential for total sugar degradation, while dextran and peptidoglycan degradation were highest in oral and vaginal sites respectively. Our analysis suggests that the carbohydrate composition of each body site has a profound influence and probably constitutes one of the major driving forces that shapes the community composition and therefore the CAZyme profile of the local microbial communities, which in turn reflects the microbiome fitness to a body site.  相似文献   

18.
19.
蝗虫肠道微生物总DNA提取方法的比较   总被引:1,自引:0,他引:1  
采用Bead beating法和QIAamp DNA stool mini kit法提取蝗虫肠道微生物总DNA,并对2种方法提取DNA的得率、完整性以及16SrRNA基因扩增产物的变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)图谱等进行综合比较。结果表明,Bead beating法提取DNA的得率显著高于QIAamp DNA stool mini kit法(P=0.042),而QIAamp DNA stool mini kit法提取DNA片段更完整。PCR-DGGE检测微生物多样性结果显示,QIAamp DNA stool mini kit法提取DNA所代表的微生物群落多样性略高于Bead beating法,但Mann-Whitley统计学检验表明用2种方法检测蝗虫肠道微生物多样性无显著差异(P=0.17)。因此在蝗虫肠道微生物群落多样性的检测中QIAamp DNA stool mini kit法具一定的优势,而Bead beating法同样适用。  相似文献   

20.
Cactaceae is considered the fifth most endangered taxonomic group. In light of this, the aim of this study was to evaluate the efficiency of different low‐temperature storage techniques in maintaining the viability of seeds of cacti in different threat categories. Seeds of six cacti taxa were stored in a cold chamber (8°C), a freezer (?5°C), in liquid nitrogen (?196°C) and at room temperature (25–27°C) for a period of 0, 1, 3, 6, 9 and 13 months. At each evaluation interval we removed a seed sample for each taxon studied, which was distributed into four repetitions of 25 seeds maintained at room temperature under 12‐h light/dark photoperiods. We evaluated the germinability, mean germination time and synchronization index. Most of the studied taxa presented germinability of above 50%, which was influenced by time and by storage temperatures. Also, most taxa stored at room temperature presented a significant reduction in germinability, whereas almost all taxa showed maintenance of the seed viability when stored in a cold chamber, a freezer or liquid nitrogen. This response can be justified by the reduction of the seed metabolism and the degradation of the reserve compounds of the seeds while at lower temperatures. Our results indicate that storage at low temperatures is an effective method for the conservation of cacti seeds and can be used for the formation of artificial seed banks of threatened cacti species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号