首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N=?73.5, 95% CI?=?64-94 in 2006; N=?50.4, 95% CI?=?49-59 in 2008) and black bears (N=?62.6, 95% CI?=?51-89 in 2006; N=?81.8, 95% CI?=?72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ=?0.93, 95% CI?=?0.74-1.17) and females (λ=?0.90, 95% CI?=?0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.  相似文献   

2.
Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted.  相似文献   

3.
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.  相似文献   

4.
When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km(2). Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species.  相似文献   

5.
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.  相似文献   

6.
Adult sex ratio and fecundity (juveniles per female) are key population parameters in sustainable wildlife management, but inferring these requires abundance estimates of at least three age/sex classes of the population (male and female adults and juveniles). Prior to harvest, we used an array of 36 wildlife camera traps during 2 and 3 weeks in the early autumn of 2016 and 2017, respectively. We recorded white‐tailed deer adult males, adult females, and fawns from the pictures. Simultaneously, we collected fecal DNA (fDNA) from 92 20 m × 20 m plots placed in 23 clusters of four plots between the camera traps. We identified individuals from fDNA samples with microsatellite markers and estimated the total sex ratio and population density using spatial capture–recapture (SCR). The fDNA‐SCR analysis concluded equal sex ratio in the first year and female bias in the second year, and no difference in space use between sexes (fawns and adults combined). Camera information was analyzed in a spatial capture (SC) framework assuming an informative prior for animals’ space use, either (a) as estimated by fDNA‐SCR (same for all age/sex classes), (b) as assumed from the literature (space use of adult males larger than adult females and fawns), or (c) by inferring adult male space use from individually identified males from the camera pictures. These various SC approaches produced plausible inferences on fecundity, but also inferred total density to be lower than the estimate provided by fDNA‐SCR in one of the study years. SC approaches where adult male and female were allowed to differ in their space use suggested the population had a female‐biased adult sex ratio. In conclusion, SC approaches allowed estimating the preharvest population parameters of interest and provided conservative density estimates.  相似文献   

7.
We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued. © 2011 The Wildlife Society.  相似文献   

8.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

9.
BackgroundThe association between the incidence of hand, foot, and mouth disease (HFMD) and ambient temperature has been well documented. Although the severity of symptoms is an important indicator of disease burden and varies significantly across cases, it usually was ignored in previous studies, potentially leading to biased estimates of the health impact of temperature.MethodsWe estimated the disability-adjusted life year (DALY) by considering the severity of symptoms for each HFMD case reported during 2010–2012 in Guangdong and used distributed lag-nonlinear models to estimate the association between the daily average temperature and daily DALY of HFMD cases at the city-level. We investigated the potential effect modifiers on the pathway between temperature and DALY and pooled city-specific estimates to a provincial association using a meta-regression. The overall impact of temperature was further evaluated by estimates of DALYs that could be attributed to HFMD.ResultsThe overall cumulative effect of daily mean temperature on the DALY of HFMD showed an inverse-U shape, with the maximum effect estimated to be β = 0.0331 (95%CI: 0.0199–0.0463) DALY at 23.8°C. Overall, a total of 6.432 (95%CI: 3.942–8.885) DALYs (attributable fraction = 2.721%, 95%CI: 1.660–3.759%) could be attributed to temperature exposure. All the demographic subgroups had a similar trend as the main analysis, while the magnitude of the peak of the temperature impact tended to be higher among the males, those aged ≥3yrs or from the Pear-River Delta region. Additionally, the impact of temperature on DALY elevated significantly with the increasing population density, per capita GDP, and per capita green space in parks.ConclusionsTemperature exposure was associated with increased burden of HFMD nonlinearly, with certain groups such as boys and those from areas with greater population density being more vulnerable.  相似文献   

10.
Abstract: The area in and around Banff National Park (BNP) in southwestern Alberta, Canada, is 1 of the most heavily used and developed areas where grizzly bears (Ursus arctos) still exist. During 1994–2002, we radiomarked and monitored 37 female and 34 male bears in this area to estimate rates of survival, reproduction, and population growth. Annual survival rates of bears other than dependent young averaged 95% for females and 81–85% for males. Although this area was largely unhunted, humans caused 75% of female mortality and 86% of male mortality. Females produced their first surviving litter at 6–12 years of age ( = 8.4 years). Litters averaged 1.84 cubs spaced at 4.4-year intervals. Adult (≥6-years-old) females produced 0.24 female cubs per year and were expected to produce an average of 1.7 female cubs in their lifetime, based on rates of reproduction and survival. Cub survival was 79%, yearling survival was 91%, and survival through independence at 2.5–5.5 years of age was 72%, as no dependent young older than yearlings died. Although this is the slowest-reproducing grizzly bear population yet studied, high rates of survival seem to have enabled positive population growth (Λ = 1.04, 95% CI = 0.99–1.09), based on analyses using Leslie matrices. Current management practices, instituted in the late 1980s, focus on alleviating human-caused bear mortality. If the 1970–1980s style of management had continued, we estimated that an average of 1 more radiomarked female would have been killed each year, reducing female survival to the point that the population would have declined.  相似文献   

11.
Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter‐ or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human‐dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric‐Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May‐June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe.  相似文献   

12.
We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded atotal population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130–147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54–0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.  相似文献   

13.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

14.
This study investigates survival and abundance of killer whales (Orcinus orca) in Norway in 1988–2019 using capture–recapture models of photo‐identification data. We merged two datasets collected in a restricted fjord system in 1988–2008 (Period 1) with a third, collected after their preferred herring prey shifted its wintering grounds to more exposed coastal waters in 2012–2019 (Period 2), and investigated any differences between these two periods. The resulting dataset, spanning 32 years, comprised 3284 captures of 1236 whales, including 148 individuals seen in both periods. The best‐supported models of survival included the effects of sex and time period, and the presence of transients (whales seen only once). Period 2 had a much larger percentage of transients compared to Period 1 (mean = 30% vs. 5%) and the identification of two groups of whales with different residency patterns revealed heterogeneity in recapture probabilities. This caused estimates of survival rates to be biased downward (females: 0.955 ± 0.027 SE, males: 0.864 ± 0.038 SE) compared to Period 1 (females: 0.998 ± 0.002 SE, males: 0.985 ± 0.009 SE). Accounting for this heterogeneity resulted in estimates of apparent survival close to unity for regularly seen whales in Period 2. A robust design model for Period 2 further supported random temporary emigration at an estimated annual probability of 0.148 (± 0.095 SE). This same model estimated a peak in annual abundance in 2015 at 1061 individuals (95% CI 999–1127), compared to a maximum of 731 (95% CI 505–1059) previously estimated in Period 1, and dropped to 513 (95% CI 488–540) in 2018. Our results indicate variations in the proportion of killer whales present of an undefined population (or populations) in a larger geographical region. Killer whales have adjusted their distribution to shifts in key prey resources, indicating potential to adapt to rapidly changing marine ecosystems.  相似文献   

15.
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.  相似文献   

16.
Estimates of demographic rates for animal populations and individuals have many applications for ecological and conservation research. In many animals, survival is size‐dependent, but estimating the form of the size–survival relationship presents challenges. For elusive species with low recapture rates, individuals’ size will be unknown at many points in time. Integrating growth and capture–mark–recapture models in a Bayesian framework empowers researchers to impute missing size data, with uncertainty, and include size as a covariate of survival, capture probability, and presence on‐site. If there is no theoretical expectation for the shape of the size–survival relationship, spline functions can allow for fitting flexible, data‐driven estimates. We use long‐term capture–mark–recapture data from the endangered San Francisco gartersnake (Thamnophis sirtalis tetrataenia) to fit an integrated growth–survival model. Growth models showed that females reach longer asymptotic lengths than males and that the magnitude of sexual size dimorphism differed among populations. The capture probability and availability of San Francisco gartersnakes for capture increased with snout–vent length. The survival rate of female snakes exhibits a nonlinear relationship with snout–vent length (SVL), with survival flat between 300 mm and 550 mm SVL before decreasing for females between 550 mm and 700 mm SVL. For male snakes, survival decreased for adult males >550 mm SVL. The survival rates of the smallest and largest San Francisco gartersnakes were highly uncertain because recapture rates were very low for these sizes. By integrating growth and survival models and using penalized splines, we found support for size‐dependent survival in San Francisco gartersnakes. Our results have applications for devising management activities for this endangered subspecies, and our methods could be applied broadly to the study of size‐dependent demography among animals.  相似文献   

17.
Abstract: Wildlife managers need reliable estimates of population size, trend, and distribution to make informed decisions about how to recover at-risk populations, yet obtaining these estimates is costly and often imprecise. The grizzly bear (Ursus arctos) population in northwestern Montana, USA, has been managed for recovery since being listed under the United States Endangered Species Act in 1975, yet no rigorous data were available to evaluate the program's success. We used encounter data from 379 grizzly bears identified through bear rub surveys to parameterize a series of Pradel model simulations in Program MARK to assess the ability of noninvasive genetic sampling to estimate population growth rates. We evaluated model performance in terms of 1) power to detect gender-specific and population-wide declines in population abundance, 2) precision and relative bias of growth rate estimates, and 3) sampling effort required to achieve 80% power to detect a decline within 10 years. Simulations indicated that ecosystem-wide, annual bear rub surveys would exceed 80% power to detect a 3% annual decline within 6 years. Robust-design models with 2 simulated surveys per year provided precise and unbiased annual estimates of trend, abundance, and apparent survival. Designs incorporating one survey per year require less sampling effort but only yield trend and apparent survival estimates. Our results suggest that systematic, annual bear rub surveys may provide a viable complement or alternative to telemetry-based methods for monitoring trends in grizzly bear populations.  相似文献   

18.
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.  相似文献   

19.
Effective conservation and management require reliable monitoring methods and estimates of abundance to prioritize human and financial investments. Camera trapping is a non-invasive sampling method allowing the use of capture–recapture (CR) models to estimate abundance while accounting for the difficulty of detecting individuals in the wild. We investigated the relative performance of standard closed CR models and spatially explicit CR models (SECR) that incorporate spatial information in the data. Using simulations, we considered 4 scenarios comparing low versus high detection probability and small versus large populations and contrasted abundance estimates obtained from both approaches. Standard CR and SECR models both provided minimally biased abundance estimates, but precision was improved when using SECR models. The associated confidence intervals also provided better coverage than their non-spatial counterpart. We concluded SECR models exhibit better statistical performance than standard closed CR models and allow for sound management strategies based on density maps of activity centers. To illustrate the comparison, we considered the Eurasian lynx (Lynx lynx) as a case study that provided the first abundance estimates of a local population in France. © 2012 The Wildlife Society.  相似文献   

20.
Spatial capture-recapture (SCR) models have advanced our ability to estimate population density for wide ranging animals by explicitly incorporating individual movement. Though these models are more robust to various spatial sampling designs, few studies have empirically tested different large-scale trap configurations using SCR models. We investigated how extent of trap coverage and trap spacing affects precision and accuracy of SCR parameters, implementing models using the R package secr. We tested two trapping scenarios, one spatially extensive and one intensive, using black bear (Ursus americanus) DNA data from hair snare arrays in south-central Missouri, USA. We also examined the influence that adding a second, lower barbed-wire strand to snares had on quantity and spatial distribution of detections. We simulated trapping data to test bias in density estimates of each configuration under a range of density and detection parameter values. Field data showed that using multiple arrays with intensive snare coverage produced more detections of more individuals than extensive coverage. Consequently, density and detection parameters were more precise for the intensive design. Density was estimated as 1.7 bears per 100 km2 and was 5.5 times greater than that under extensive sampling. Abundance was 279 (95% CI = 193–406) bears in the 16,812 km2 study area. Excluding detections from the lower strand resulted in the loss of 35 detections, 14 unique bears, and the largest recorded movement between snares. All simulations showed low bias for density under both configurations. Results demonstrated that in low density populations with non-uniform distribution of population density, optimizing the tradeoff among snare spacing, coverage, and sample size is of critical importance to estimating parameters with high precision and accuracy. With limited resources, allocating available traps to multiple arrays with intensive trap spacing increased the amount of information needed to inform parameters with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号