首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.  相似文献   

2.
Knowledge of the distribution patterns of soil organic carbon (SOC) and factors that influence these patterns is crucial for understanding the carbon cycle. The objectives of this study were to determine the spatial distribution pattern of soil organic carbon density (SOCD) and the controlling factors in arid desert grasslands of northwest China. The above- and belowground biomass and SOCD in 260 soil profiles from 52 sites over 2.7×104 km2 were investigated. Combined with a satellite-based dataset of an enhanced vegetation index during 2011–2012 and climatic factors at different sites, the relationships between SOCD and biotic and abiotic factors were identified. The results indicated that the mean SOCD was 1.20 (SD:+/− 0.85), 1.73 (SD:+/− 1.20), and 2.69 (SD:+/− 1.91) kg m−2 at soil depths of 0–30 cm, 0–50 cm, and 0–100 cm, respectively, which was smaller than other estimates in temperate grassland, steppe, and desert-grassland ecosystems. The spatial distribution of SOCD gradually decreased from the southeast to the northwest, corresponding to the precipitation gradient. SOCD increased significantly with vegetation biomass, annual precipitation, soil moisture, clay and silt content, and decreased with mean annual temperature and sand content. The correlation between BGB and SOCD was closer than the correlation between AGB and SOCD. Variables could together explain about 69.8%, 74.4%, and 78.9% of total variation in SOCD at 0–30 cm, 0–50 cm, and 0–100 cm, respectively. In addition, we found that mean annual temperature is more important than other abiotic factors in determining SOCD in arid desert grasslands in our study area. The information obtained in this study provides a basis for accurately estimating SOC stocks and assessing carbon (C) sequestration potential in the desert grasslands of northwest China.  相似文献   

3.
Wood from short rotation coppices (SRCs) is discussed as bioenergy feedstock with good climate mitigation potential inter alia because soil organic carbon (SOC) might be sequestered by a land-use change (LUC) from cropland to SRC. To test if SOC is generally enhanced by SRC over the long term, we selected the oldest Central European SRC plantations for this study. Following the paired plot approach soils of the 21 SRCs were sampled to 80 cm depth and SOC stocks, C/N ratios, pH and bulk densities were compared to those of adjacent croplands or grasslands. There was no general trend to SOC stock change by SRC establishment on cropland or grassland, but differences were very site specific. The depth distribution of SOC did change. Compared to cropland soils, the SOC density in 0–10 cm was significantly higher under SRC (17 ± 2 in cropland and 21 ± 2 kg C m−3 in SRC). Under SRC established on grassland SOC density in 0–10 cm was significantly lower than under grassland. The change rates of total SOC stocks by LUC from cropland to SRC ranged from −1.3 to 1.4 Mg C ha−1 yr−1 and −0.6 Mg C ha−1 yr−1 to +0.1 Mg C ha−1 yr−1 for LUC from grassland to SRC, respectively. The accumulation of organic carbon in the litter layer was low (0.14 ± 0.08 Mg C ha−1 yr−1). SOC stocks of both cropland and SRC soils were correlated with the clay content. No correlation could be detected between SOC stock change and soil texture or other abiotic factors. In summary, we found no evidence of any general SOC stock change when cropland is converted to SRC and the identification of the factors determining whether carbon may be sequestered under SRC remains a major challenge.  相似文献   

4.
蔡晓布  周进 《应用生态学报》2009,20(11):2639-2645
利用网格采样法研究了藏北退化高寒草原土壤有机碳变化及与土壤物理性质的关系.结果表明:0~10和11~20 cm土层有机碳含量、有机碳密度及其土层差异均为:轻度退化草地>正常草地>中度退化草地>严重退化草地;有机碳含量、有机碳密度年变化速率则呈相反趋势,且表层土壤有机碳变幅均明显高于其下层土壤.正常草地、轻度退化草地0~10 cm土层有机碳年累积量为0.018和0.003 g·kg.-1,分别为11~20 cm土层年累积量的6.0和2.0倍;中度、严重退化草地0~10 cm土层年损失量达0.150和0.231 g·kg-1,分别为11~20 cm土层年损失量的2.3和2.2倍.中度、严重退化草地有机碳年损失总量为正常草地和轻度退化草地年累积总量的38倍,有机碳年损失总量达7.87×105 t C,且具有较大的潜在退化态势.土壤有机碳与5.0~1.0、1.0~0.5和0.5~0.25 mm团聚体含量,土壤有机碳与土壤容重、土壤含水量间均呈极显著或显著正相关.  相似文献   

5.
The conversion of annually cultivated or disturbed marginal land to forage grasses has the potential to accrete soil organic carbon (SOC) in the surface 0–15 cm depth. Soil organic carbon mass (Mg ha–1) was measured in ten side-by-side cultivated versus forage grass seed-down restoration treatments on catenae at various sites in east-central Saskatchewan, Canada. Treatments were imposed for time periods ranging from five to twelve years. It was found that SOC mass was usually significantly higher in the grassland restorations versus the paired cultivated equivalents. Estimated SOC gain rates (0–15 cm) from grass seed-down in the region was estimated to be 0.6 to 0.8 Mg C ha–1 yr–1. Light fraction organic carbon (LFOC), the labile component of SOC, was more variable in the comparisons than SOC. Measured 13C natural abundance values in selected equivalent comparisons revealed a possible contribution from seeded warm season C4 grasses and soil carbonate 13C to the C pools in upslope positions of the landscape. Overall, grassland restoration in this region appears to result in increased carbon storage in the surface soil.  相似文献   

6.
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years.  相似文献   

7.
Grassland recovery and reconstruction are critical to ecological restoration in the Chinese Loess Plateau (CLP). Investigating changes in soil organic carbon density (SOCD), soil organic carbon (SOC) storage, and the rate of SOC sequestration is very important to assess the effect of ecological recovery and estimate the capacity of soil carbon sequestration. Here, we present the data of SOCD, SOC storage, and SOC sequestration rate from grasslands conversion from farmlands in the CLP. Our results indicate that: (1) The average SOCD (0–100 cm) in sites continued cultivation (CC), cultivation abandonment at 1999 (AC-99) and cultivation abandonment at 1989 (AC-89) is 6.00, 21.64 and 22.23 kg m?2, respectively. SOCD in sites AC-99 and AC-89 is significantly higher than that in site CC and the average SOCD of China (10.53 kg m?2), which indicates that vegetation restoration is benefit to increase soil carbon storage as well as preserve soil and water in this area. (2) The SOC storage (0–100 cm) in sites CC, AC-99 and AC-89 is 60.02, 216.35 and 222.32 kg m?2, respectively. Results of ANOVA indicate that SOC storage of AC-99 is significantly higher than that of CC, while SOC storage of AC-89 is significantly higher than that of AC-99 at the depth of 0–50 cm (P < 0.001). It suggests that the capability of soil carbon sequestration increases after vegetation restoration, which is mainly due to the increase of plant roots. (3) The rate of SOC sequestration varies at different depths, which is high at the depth of 0–50 cm while low at the depth of 50–100 cm. This is probably due to the accumulation of plant root in the surface layer, which is the main controlling factor of SOC in this area. Our results indicate that the SOCD and SOC storage increase with vegetation restoration in our study site significantly.  相似文献   

8.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1.  相似文献   

9.
Soil organic carbon stocks in China and changes from 1980s to 2000s   总被引:12,自引:0,他引:12  
The estimation of the size and changes of soil organic carbon (SOC) stocks is of great importance for decision makers to adopt proper measures to protect soils and to develop strategies for mitigation of greenhouse gases. In this paper, soil data from the Second State Soil Survey of China (SSSSC) conducted in the early 1980s and data published in the last 5 years were used to estimate the size of SOC stocks over the whole profile and their changes in China in last 20 years. Soils were identified as paddy, upland, forest, grassland or waste‐land soils and an improved soil bulk density estimation method was used to estimate missing bulk density data. In the early 1980s, total SOC stocks were estimated at 89.61 Pg (1 Pg=103 Tg=1015 g) in China's 870.94 Mha terrestrial areas covered by 2473 soil series. In the paddy, upland, forest and grassland soils the respective total SOC stocks were 2.91 Pg on 29.87 Mha, 10.07 Pg on 125.89 Mha, 34.23 Pg on 249.32 Mha and 37.71 Pg on 278.51 Mha, respectively. The SOC density of the surface layer ranged from 3.5 Mg ha−1 in Gray Desery grassland soils to 252.6 Mg ha−1 in Mountain Meadow forest soils. The average area‐weighted total SOC density in paddy soils (97.6 Mg ha−1) was higher than that in upland soils (80 Mg ha−1). Soils under forest (137.3 Mg ha−1) had a similar average area‐weighted total SOC density as those under grassland (135.4 Mg ha−1). The annual estimated SOC accumulation rates in farmland and forest soils in the last 20 years were 23.61 and 11.72 Tg, respectively, leading to increases of 0.472 and 0.234 Pg SOC in farmland and forest areas, respectively. In contrast, SOC under grassland declined by 3.56 Pg due to the grassland degradation over this period. The resulting estimated net SOC loss in China's soils over the last 20 years was 2.86 Pg. The documented SOC accumulation in farmland and forest soils could thus not compensate for the loss of SOC in grassland soils in the last 20 years. There were, however, large regional differences: Soils in China's South and Eastern parts acted mainly as C sinks, increasing their average topsoil SOC by 132 and 145 Tg, respectively. In contrast, in the Northwest, Northeast, Inner Mongolia and Tibet significant losses of 1.38, 0.21, 0.49 and 1.01 Pg of SOC, respectively, were estimated over the last 20 years. These results highlight the importance to take measures to protect grassland and to improve management practices to increase C sequestration in farmland and forest soils.  相似文献   

10.
The dynamics of roots and soil organic carbon (SOC) in deeper soil layers are amongst the least well understood components of the global C cycle, but essential if soil C is to be managed effectively. This study utilized a unique set of land-use pairings of harvested tallgrass prairie grasslands (C4) and annual wheat croplands (C3) that were under continuous management for 75 years to investigate and compare the storage, turnover and allocation of SOC in the two systems to 1 m depth. Cropland soils contained 25 % less SOC than grassland soils (115  and 153 Mg C ha?1, respectively) to 1 m depth, and had lower SOC contents in all particle size fractions (2000–250, 250–53, 53–2 and <2 μm), which nominally correspond to SOC pools with different stability. Soil bulk δ13C values also indicated the significant turnover of grassland-derived SOC up to 80 cm depth in cropland soils in all fractions, including deeper (>40 cm) layers and mineral-associated (<53 μm) SOC. Grassland soils had significantly more visible root biomass C than cropland soils (3.2 and 0.6 Mg ha?1, respectively) and microbial biomass C (3.7 and 1.3 Mg ha?1, respectively) up to 1 m depth. The outcomes of this study demonstrated that: (i) SOC pools that are perceived to be stable, i.e. subsoil and mineral-associated SOC, are affected by land-use change; and, (ii) managed perennial grasslands contained larger SOC stocks and exhibited much larger C allocations to root and microbial pools than annual croplands throughout the soil profile.  相似文献   

11.
The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large‐scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha?1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha?1 in surface soils (0–30 cm), and 13.7 t ha?1 in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.  相似文献   

12.
Sulphate fluxes in bulk deposition, throughfall and soil solution were monitored during two years, and integrated within a model describing the cycling of S in a chalk grassland ecosystem. Throughfall fluxes were strongly determined by interceptive properties of the grassland canopy. Seasonal variation in Leaf Area Index resulted in dry deposition velocities for SO2 varying between 0.1 cm.s–1 (snow cover, almost no aerodynamic resistance) to 0.9–1.8 cm.s–1 in periods with a fully developed canopy. On an annual basis net canopy exchange (assimilation of SO2 minus foliar leaching) was estimated to be –15% of net throughfall. Simulated soil solution concentrations, being the result of throughfall input, leaching, adsorption, biomass uptake and mineralization, closely fitted actual values (r > 0.92; p > 0.001). Actual and simulated leaching were 1.74 ± 0.03 and 2.00 keq.-ha–1.yr–1, respectively. Sulphur budgets for the soil showed net accumulation from April to October and net losses from October to April. Annual budgets for the ecosystem showed atmospheric input (2.02keq.ha–1.yr–1) and actual output (2.05keq.ha–1.yr–1) to be almost balanced. Apart from increased soil solution concentrations, additional input of sulphate (3.55 keq.ha–1.yr–1) to experimental plots resulted in additional accumulation in the ecosystem of 0.62 keq.ha–1.yr–1  相似文献   

13.
Conservation agriculture can provide a low‐cost competitive option to mitigate global warming with reduction or elimination of soil tillage and increase soil organic carbon (SOC). Most studies have evaluated the impact of zero till (ZT) only on surface soil layers (down to 30 cm), and few studies have been performed on the potential for C accumulation in deeper layers (0–100 cm) of tropical and subtropical soils. In order to determine whether the change from conventional tillage (CT) to ZT has induced a net gain in SOC, three long‐term experiments (15–26 years) on free‐draining Ferralsols in the subtropical region of South Brazil were sampled and the SOC stocks to 30 and 100 cm calculated on an equivalent soil mass basis. In rotations containing intercropped or cover‐crop legumes, there were significant accumulations of SOC in ZT soils varying from 5 to 8 Mg ha?1 in comparison with CT management, equivalent to annual soil C accumulation rates of between 0.04 and 0.88 Mg ha?1. However, the potential for soil C accumulation was considerably increased (varying from 0.48 to 1.53 Mg ha?1 yr?1) when considering the soil profile down to 100 cm depth. On average the estimate of soil C accumulation to 100 cm depth was 59% greater than that for soil C accumulated to 30 cm. These findings suggest that increasing sampling depth from 30 cm (as presently recommended by the IPCC) to 100 cm, may increase substantially the estimates of potential CO2 mitigation induced by the change from CT to ZT on the free‐draining Ferralsols of the tropics and subtropics. It was evident that that legumes which contributed a net input of biologically fixed N played an important role in promoting soil C accumulation in these soils under ZT, perhaps due to a slow‐release of N from decaying surface residues/roots which favored maize root growth.  相似文献   

14.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

15.
Land‐use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites in the temperate zone, carbon response functions (CRFs) were derived to model the temporal dynamic of SOC after five different LUC types (mean soil depth of 30±6 cm). Grassland establishment caused a long lasting carbon sink with a relative stock change of 128±23% and afforestation on former cropland a sink of 116±54%, 100 years after LUC (mean±95% confidence interval). No new equilibrium was reached within 120 years. In contrast, there was no SOC sink following afforestation of grasslands and 75% of all observations showed SOC losses, even after 100 years. Only in the forest floor, there was carbon accumulation of 0.38±0.04 Mg ha?1 yr?1 in afforestations adding up to 38±4 Mg ha?1 labile carbon after 100 years. Carbon loss after deforestation (?32±20%) and grassland conversion to cropland (?36±5%), was rapid with a new SOC equilibrium being reached after 23 and 17 years, respectively. The change rate of SOC increased with temperature and precipitation but decreased with soil depth and clay content. Subsoil SOC changes followed the trend of the topsoil SOC changes but were smaller (25±5% of the total SOC changes) and with a high uncertainty due to a limited number of datasets. As a simple and robust model approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC.  相似文献   

16.
Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumulation in the C. equisetifolia plant biomass during 0–3, 3–6, 6–13 and 13–18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg C ha−1 yr−1, respectively. Soil organic C (SOC) at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and 11.87 Mg C ha−1, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha−1 in the 3, 6, 13 and 18- yrs plantation, with most of the C accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the ecological and social benefits of the C equisetifolia shelterbelt forests in South China.  相似文献   

17.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

18.
Soil monitoring programmes face significant challenges as there is an important trade‐off between detecting significant changes in soil properties on the one hand (which can be achieved by minimizing variability by higher sampling density or stratification approaches), and identifying the driving forces responsible for these changes on the other hand (which requires enough variability). This study aims to reconcile these two objectives by identifying the driving forces of soil organic carbon (SOC) evolution over a long period, based on an extensive but stratified soil monitoring programme. Data at both the finest level (questionnaires to the farmers) and the large scale (agricultural census, climate and soil databases for southern Belgium) were used in a cluster analysis, multiple linear regressions and mixed odels in order to discriminate between the driving forces involved. Results indicated that the negative ‘baseline effect’ (i.e. the inversely proportional effect of the initial SOC content on the SOC evolution) was responsible for an important part of the SOC variability. Consequently, the systems are not at steady state when starting the observations, although this assumption is used by most SOC dynamic models. Moreover, the baseline effect resulted in a trend of the soils to converge towards a regional SOC stock which significantly differed according to land use (36.4 t C ha?1 for the plough depth of cropland and 92.2 t C ha?1 for the 0–30 cm layer of grassland). Despite this strong effect, the main driving forces of the SOC decrease of cropland (?0.2 t C ha?1 yr?1) and SOC increase of grassland (+0.2 t C ha?1 yr?1) over a period of 50 years were discriminated. The agricultural management (cropland) and the clay content (grassland), together with the change in precipitation (to a lesser degree for cropland) were highlighted as the predominant factors involved in SOC evolution, when land use change is excluded. The use of questionnaires allowed to better understanding the impact of an intensive agricultural management on the SOC content, as the lowest SOC stocks were associated to the most intensively managed fields. The mixed models partly succeeded in predicting SOC evolution as they presented still large uncertainties after validation (mean error from 3% to 25%, root mean square error of prediction from 21% to 242%). While SOC monitoring schemes are increasingly being implemented, our results will likely apply to those using a similar design. It was shown that this strategy succeeded to reconcile both the SOC change detection and the distinction of the driving forces involved at the regional scale.  相似文献   

19.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

20.
In recent years, the increase in Brazilian ethanol production has been based on expansion of sugarcane‐cropped area, mainly by the land use change (LUC) pasture–sugarcane. However, second‐generation (2G) cellulosic‐derived ethanol supplies are likely to increase dramatically in the next years in Brazil. Both these management changes potentially affect soil C (SOC) changes and may have a significant impact on the greenhouse gases balance of Brazilian ethanol. To evaluate these impacts, we used the DayCent model to predict the influence of the LUC native vegetation (NV)–pasture (PA)–sugarcane (SG), as well as to evaluate the effect of different management practices (straw removal, no‐tillage, and application of organic amendments) on long‐term SOC changes in sugarcane areas in Brazil. The DayCent model estimated that the conversion of NV‐PA caused SOC losses of 0.34 ± 0.03 Mg ha?1 yr?1, while the conversion PA‐SG resulted in SOC gains of 0.16 ± 0.04 Mg ha?1 yr?1. Moreover, simulations showed SOC losses of 0.19 ± 0.04 Mg ha?1 yr?1 in SG areas in Brazil with straw removal. However, our analysis suggested that adoption of some best management practices can mitigate these losses, highlighting the application of organic amendments (+0.14 ± 0.03 Mg C ha?1 yr?1). Based on the commitments made by Brazilian government in the UNFCCC, we estimated the ethanol production needed to meet the domestic demand by 2030. If the increase in ethanol production was based on the expansion of sugarcane area on degraded pasture land, the model predicted a SOC accretion of 144 Tg from 2020 to 2050, while increased ethanol production based on straw removal as a cellulosic feedstock was predicted to decrease SOC by 50 Tg over the same 30‐year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号