首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Pentraxin3 (PTX3) is a protein, which has multifaceted effects on innate immunity, angiogenesis, and vascular remodeling then could be a disease marker of acute myocardial infarction, heart failure, vasculitis. In addition, PTX3 has been recognized as a biomarker for pulmonary arterial hypertension, however whether it is the case in chronic thromboembolic pulmonary hypertension (CTEPH) remains unclear. Therefore, we investigated whether PTX3 would be a useful biomarker for detecting CTEPH with respect to differentiation from stable pulmonary thromboembolism (PTE), in comparison to other biomarkers.

Methods

Plasma PTX3 and brain natriuretic peptide (BNP) levels were measured in 70 patients with CTEPH at their first diagnostic right heart catheterization (CTEPH group) and in 20 patients with clinically stable PTE more than three months after the acute episode (control group). The levels of plasma C-reactive protein (CRP) and heart-type fatty acid-binding protein (H-FABP) were also analyzed to compare the diagnostic ability of these biomarkers.

Results

The mean level of PTX3 (ng/mL) was significantly higher in the CTEPH group than in the control group (5.51±4.53 versus 2.01±0.96, respectively), and PTX3 levels had mild negative correlation with cardiac output. BNP levels were also higher in the CTEPH group and better correlated with pulmonary hemodynamics than PTX3. However, a receiver operating characteristic (ROC) curve showed PTX3 levels were better for detecting CTEPH, and could detect CTEPH patients with less severe pulmonary hemodynamics and low plasma BNP levels. There was no significant increase in CRP and H-FABP levels in the CTEPH patients.

Conclusions

Plasma PTX3 level was the most sensitive biomarker of CTEPH. Although plasma PTX3 levels did not correlate with the severity of the pulmonary hemodynamics compared to BNP, high levels in clinically stable patients following PTE should prompt a further work-up for CTEPH, which may lead to an early diagnosis.  相似文献   

2.
3.
The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is unknown. Histopathologic studies revealed that pulmonary vasculature lesions similar to idiopathic pulmonary arterial hypertension (PAH) existed in CTEPH patients as well. It’s well-known that genetic predisposition plays an important role in the mechanism of PAH. So we hypothesized that PAH-causing gene mutation might exist in some CTEPH patients and act as a background to facilitate the development of CTEPH. In this study, we analyzed 7 PAH-causing genes including BMPR2, ACVRL1, ENG, SMAD9, CAV1, KCNK3, and CBLN2 in 49 CTEPH patients and 17 patients recovered from pulmonary embolism (PE) but without pulmonary hypertension(PH). The results showed that the nonsynonymous mutation rate in CTEPH patients is significantly higher than that in PE without PH patients (25 out of 49 (51%) CTEPH patients vs. 3 out of 17 PE without PH patients (18%); p = 0.022). Four CTEPH patients had the same point mutation in ACVRL1 exon 10 (c.1450C>G), a mutation approved to be associated with PH in a previous study. In addition, we identified two CTEPH associated SNPs (rs3739817 and rs55805125). Our results suggest that PAH-causing gene mutation might play an important role in the development of CTEPH.  相似文献   

4.

Background

We aimed to study whether pulmonary arterial distensibility (PAD) correlates with hemodynamic parameters in chronic thromboembolic pulmonary hypertension (CTEPH) using electrocardiogram (ECG)-gated 320-slice multidetector computed tomography (MDCT).

Methods and Findings

ECG-gated 320-slice MDCT and right heart catheterization (RHC) was performed in 53 subjects (60.6±11.4 years old; 37 females) with CTEPH. We retrospectively measured the minimum and maximum values of the cross sectional area (CSA) of the main pulmonary artery (mainPA), right pulmonary artery (rtPA), and left pulmonary artery (ltPA) during one heartbeat. PAD was calculated using the following formula: PAD = [(CSAmaximum−CSAminimum)/CSAmaximum]×100(%). The correlation between hemodynamic parameters and PAD was assessed. Mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) were 40.8±8.7 mmHg and 8.3±3.0 wood units, respectively. PAD values were as follows: mainPA (14.0±5.0%), rtPA (12.8±5.6%), and ltPA (9.7±4.6%). Good correlations existed between mainPAD, with mPAP (r = −0.594, p<0.001) and PVR (r = −0.659, p<0.001). The correlation coefficients between rtPAD and ltPAD with pulmonary hemodynamics were all lower or equal than for mainPAD.

Conclusions

PAD measured using ECG-gated 320-slice MDCT correlates with pulmonary hemodynamics in subjects with CTEPH. The mainPA is suitable for PAD measurement.  相似文献   

5.

Background

Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with proximal pulmonary artery obstruction and vascular remodeling. We hypothesized that pulmonary arterial smooth muscle (PASMC) and endothelial cells (PAEC) may actively contribute to remodeling of the proximal pulmonary vascular wall in CTEPH. Our present objective was to characterize PASMC and PAEC from large arteries of CTEPH patients and investigate their potential involvement in vascular remodeling.

Methods

Primary cultures of proximal PAEC and PASMC from patients with CTEPH, with non-thromboembolic pulmonary hypertension (PH) and lung donors have been established. PAEC and PASMC have been characterized by immunofluorescence using specific markers. Expression of smooth muscle specific markers within the pulmonary vascular wall has been studied by immunofluorescence and Western blotting. Mitogenic activity and migratory capacity of PASMC and PAEC have been investigated in vitro.

Results

PAEC express CD31 on their surface, von Willebrand factor in Weibel-Palade bodies and take up acetylated LDL. PASMC express various differentiation markers including α-smooth muscle actin (α-SMA), desmin and smooth muscle myosin heavy chain (SMMHC). In vascular tissue from CTEPH and non-thromboembolic PH patients, expression of α-SMA and desmin is down-regulated compared to lung donors; desmin expression is also down-regulated in vascular tissue from CTEPH compared to non-thromboembolic PH patients. A low proportion of α-SMA positive cells express desmin and SMMHC in the neointima of proximal pulmonary arteries from CTEPH patients. Serum-induced mitogenic activity of PAEC and PASMC, as well as migratory capacity of PASMC, were increased in CTEPH only.

Conclusions

Modified proliferative and/or migratory responses of PASMC and PAEC in vitro, associated to a proliferative phenotype of PASMC suggest that PASMC and PAEC could contribute to proximal vascular remodeling in CTEPH.  相似文献   

6.
Idiopathic pulmonary arterial hypertension (IPAH) is a rare and progressive disease of unknown pathogenesis. Vascular remodeling due to excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a critical pathogenic event that leads to early morbidity and mortality. The excessive cell proliferation is closely linked to the augmented Ca2+ signaling in PASMCs. More recently, we have shown by an siRNA knockdown method that the Ca2+-sensing receptor (CaSR) is upregulated in PASMCs from IPAH patients, involved in the enhanced Ca2+ response and subsequent excessive cell proliferation. In this study, we examined whether pharmacological blockade of CaSR attenuated the excessive proliferation of PASMCs from IPAH patients by MTT assay. The proliferation rate of PASMCs from IPAH patients was much higher (~1.5-fold) than that of PASMCs from normal subjects and patients with chronic thromboembolic pulmonary hypertension (CTEPH). Treatment with NPS2143, an antagonist of CaSR or calcilytic, clearly suppressed the cell proliferation in a concentration-dependent manner (IC50 = 2.64 μM) in IPAH-PASMCs, but not in normal and CTEPH PASMCs. Another calcilytic, Calhex 231, which is structurally unrelated to NPS2143, also concentration-dependently inhibited the excessive proliferation of IPAH-PASMCs (IC50 = 1.89 μM). In contrast, R568, an activator of CaSR or calcimimetic, significantly facilitated the proliferation of IPAH-PASMCs (EC50 = 0.33 μM). Similar results were obtained by BrdU incorporation assay. These results reveal that the excessive PASMC proliferation was modulated by pharmacological tools of CaSR, showing us that calcilytics are useful for a novel therapeutic approach for pulmonary arterial hypertension.  相似文献   

7.
摘要 目的:研究肺心通对慢性肺源性心脏病(CPHD)大鼠的治疗效果,并探讨其治疗对慢性肺源性心脏病大鼠肺动脉高压、血流动力学以及肺血管重构的影响。方法:30只Wistar大鼠被随机均分为正常对照组(Normal control)、模型组(Model)和肺心通组(Feixintong)。模型组和肺心通组大鼠腹腔注射野百合碱建立CPHD模型,肺心通组CPHD大鼠通过灌胃给药肺心通进行治疗3周。治疗3周后,测量三组大鼠0.3秒呼出量(FEV0.3)、呼出肺功能量(FVC)、肺动脉压、左室射血分数(Left ventricular ejection fraction,LVEF)、左心室舒张末期内径(Left ventricular end diastolic diameter ,LVEDD)、室间隔厚度 (Ventricular septal thickness,IVST)和左室后壁厚度(Left ventricular posterior wall thickness,LVPWT)、肺动脉收缩压(pulmonary artery systolic pressure,PASP)、血氧分压(Partial pressure of blood oxygen,PO2)、肺动脉平均压(mean pulmonary artery pressure,mPAP)以及舒张压(pulmonary artery diastolic pressure,PADP)以及肺血管重构相关指标。结果:与模型组大鼠相比,肺心通组大鼠活动量、饮食饮水量以及体重均显著增高,呼吸和舌色等症状均改善。肺心通治疗3周后,CPHD大鼠肺功能指标FEV0.3、FVC和FEV0.3/FVC均显著升高(P<0.05),心脏功能结构指标LVEF、LVEDD、IVST和LVPWT均显著升高(P<0.05),血流动力学指标PASP、PADP和mPAP均显著降低(P<0.05),以及肺血管重构指标MA、WT和WA均显著降低(P<0.05),而肺血管重构指标NMA却显著升高(P<0.05)。结论:肺心通对慢性肺源性心脏大鼠具有较好的治疗效果,可显著降低慢性肺源性心脏大鼠肺动脉高压,改善其血流动力学变化并有助于重构肺血管。  相似文献   

8.

Background

Pulmonary endarterectomy (PEA) is established for the treatment of chronic thromboembolic pulmonary hypertension (CTEPH). Recently, percutaneous transluminal pulmonary angioplasty (PTPA) has been added for peripheral-type CTEPH, whose lesions exist in segmental, subsegmental, and more distal pulmonary arteries. A shift in clinical practice of interventional therapies occurred in 2009 (first mainly PEA, later PTPA). We examined the latest clinical outcomes of patients with CTEPH.

Methods and Results

This study retrospectively included 136 patients with CTEPH. Twenty-nine were treated only with drug (Drug-group), and the other 107 underwent interventional therapies (Interventions-group) (39 underwent PEA [PEA-group] and 68 underwent PTPA [PTPA-group]). Total 213 PTPA sessions (failures, 0%; mortality rate, 1.47%) was performed in the PTPA-group (complications: reperfusion pulmonary edema, 7.0%; hemosputum or hemoptysis, 5.6%; vessel dissection, 2.3%; wiring perforation, 0.9%). Although baseline hemodynamic parameters were significantly more severe in the Interventions-group, the outcome after the diagnosis was much better in the Interventions-group than in the Drug-group (98% vs. 64% 5-year survival, p<0.0001). Hemodynamic improvement in the PEA-group was a 46% decrease in mean pulmonary arterial pressure (PAP) and a 49% decrease in total pulmonary resistance (TPR) (follow-up period; 74.7±32.3 months), while those in the PTPA-group were a 40% decrease in mean PAP and a 49% decrease in TPR (follow-up period; 17.4±9.3 months). The 2-year survival rate in the Drug-group was 82.0%, and the 2-year survival rate, occurrence of right heart failure, and re-vascularization rate in the PEA-group were 97.4%, 2.6%, and 2.8%, and those in the PTPA-group were 98.5%, 2.9%, and 2.9%, respectively.

Conclusion

The patients who underwent interventional therapies had better results than those treated only with drugs. The availability of both of these operative and catheter-based interventional therapies leads us to expect the dawn of a new era of therapeutic strategies for CTEPH.  相似文献   

9.

Objective

The molecular determinants of chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH) remain poorly understood. The receptor for advanced glycation endproducts (RAGE) and its ligands: HMGB1 and S100A9 are involved in inflammatory disorders. We sought to investigate the role of the RAGE axis in patients with CTEPH undergoing pulmonary endarterectomy (PEA), iPAH undergoing lung transplantation (LuTX). The high pulmonary vascular resistance in CTEPH/iPAH results in pressure overload of the right ventricle. We compared sRAGE measurements to that of patients with aortic valve stenosis (AVS) – pressure overload of the left ventricle.

Methods

We enrolled patients with CTEPH(26), iPAH(15), AVS(15) and volunteers(33). Immunohistochemistry with antibodies to RAGE and HMGB1 was performed on PEA specimens and lung tissues. We employed enzyme-linked immunosorbent assays to determine the concentrations of sRAGE, esRAGE, HMGB1 and S100A9 in serum of volunteers and patients with CTEPH, iPAH, AVS before and after PEA, LuTX and aortic valve replacement (AVR).

Results

In endarterectomised tissues from patients with CTEPH RAGE and HMGB1 were identified in myofibroblasts (α-SMA+vimentin+CD34), recanalizing vessel-like structures of distal myofibrotic tissues and endothelium of neointima. RAGE was differentially expressed in prototypical Heath Edwards lesions in iPAH. We found significantly increased serum concentrations of sRAGE, esRAGE and HMGB1 in CTEPH. In iPAH, sRAGE and esRAGE were significantly higher than in controls. Serum concentrations of sRAGE were significantly elevated in iPAH(p<0.001) and CTEPH(p = 0.001) compared to AVS. Serum sRAGE was significantly higher in iPAH compared to CTEPH(p = 0.042) and significantly reduced in AVS compared to controls(p = 0.001). There were no significant differences in sRAGE serum concentrations before and after surgical therapy for CTEPH, iPAH or AVS.

Conclusions

Our data suggest a role for the RAGE pathway in the pathophysiology of CTEPH and iPAH. PEA improves the local control of disease but may not influence the systemic inflammatory mechanisms in CTEPH patients through the RAGE pathway.  相似文献   

10.
BackgroundCirculating angiopoietin-1 (Ang-1) has been linked to pulmonary hypertension (PH) in experimental studies. However, the clinical relevance of Ang-1 as a biomarker in PH remains unknown. We aimed to investigate the prognostic and clinical significance of Ang-1 in PH using data from the prospectively recruiting Giessen PH Registry.MethodsPatients with suspected PH (without previous specific pulmonary arterial hypertension [PAH] therapy) who underwent initial right heart catheterization (RHC) in our national referral center between July 2003 and May 2012 and who agreed to optional biomarker analysis were included if they were diagnosed with idiopathic PAH, connective tissue disease-associated PAH (CTD-PAH), PH due to left heart disease (PH-LHD), or chronic thromboembolic PH (CTEPH), or if PH was excluded by RHC (non-PH controls). The association of Ang-1 levels with disease severity (6-minute walk distance and pulmonary hemodynamics) was assessed using linear regression, and the impact of Ang-1 levels on transplant-free survival (primary endpoint) and clinical worsening was assessed using Kaplan—Meier curves, receiver operating characteristic (ROC) analyses, and Cox regression.Results151 patients (39, 39, 32, and 41 with idiopathic PAH, CTD-PAH, PH-LHD, and CTEPH, respectively) and 41 non-PH controls were included. Ang-1 levels showed no significant difference between groups (p = 0.8), and no significant associations with disease severity in PH subgroups (p ≥ 0.07). In Kaplan—Meier analyses, Ang-1 levels (stratified by quartile) had no significant impact on transplant-free survival (p ≥ 0.27) or clinical worsening (p ≥ 0.51) in PH subgroups. Regression models found no significant association between Ang-1 levels and outcomes (p ≥ 0.31). ROC analyses found no significant cut-off that would maximize sensitivity and specificity.ConclusionsDespite a strong pathophysiological association in experimental studies, this first comprehensive analysis of Ang-1 in PH subgroups suggests that Ang-1 is not a predictive and clinically relevant biomarker in PH.  相似文献   

11.

Introduction

When hemoptysis complicates pulmonary arterial hypertension (PAH), it is assumed to result from bronchial artery hypertrophy. In heritable PAH, the most common mutation is in the BMPR2 gene, which regulates growth, differentiation and apoptosis of mesenchymal cells. The aim of this study is to determine the relationship in PAH between the occurrence of hemoptysis, and disease progression, bronchial artery hypertrophy, pulmonary artery dilation and BMPR2 mutations.

Methods

129 IPAH patients underwent baseline pulmonary imaging (CT angio or MRI) and repeated right-sided heart catheterization. Gene mutations were assessed in a subset of patients.

Results

Hemoptysis was associated with a greater presence of hypertrophic bronchial arteries and more rapid hemodynamic deterioration. The presence of a BMPR2 mutation did not predispose to the development of hemoptysis, but was associated with a greater number of hypertrophic bronchial arteries and a worse baseline hemodynamic profile.

Conclusion

Hemoptysis in PAH is associated with bronchial artery hypertrophy and faster disease progression. Although the presence of a BMPR2 mutation did not correlate with a greater incidence of hemoptysis in our patient cohort, its association with worse hemodynamics and a trend of greater bronchial arterial hypertrophy may increase the risk of hemoptysis.  相似文献   

12.
Background

Pulmonary artery (PA) dilatation is often seen in pulmonary hypertension (PH) and is considered a long-term consequence of elevated pressure. The PA dilates over time and therefore may reflect disease severity and duration. Survival is related to the stage of the disease at the time of diagnosis and therefore PA diameter might be used to predict prognosis. This study evaluates the outcome of patients with pulmonary arterial hypertension (PAH) and chronic thrombo-embolic pulmonary hypertension (CTEPH) and investigates whether PA diameter at the time of diagnosis is associated with mortality.

Methods

Patients visiting an outpatient clinic of a tertiary centre between 2004 and 2018 with a cardiac catheterisation confirmed diagnosis of PAH or CTEPH and a CT scan available for PA diameter measurement were included. PA diameter and established predictors of survival were collected (New York Heart Association (NYHA) class, N‑terminal pro-brain natriuretic peptide (NT-proBNP) level and 6‑min walking distance (6MWD)).

Results

In total 217 patients were included (69% female, 71% NYHA class ≥III). During a median follow-up of 50 (22–92) months, 54% of the patients died. Overall survival was 87% at 1 year, 70% at 3 years and 58% at 5 years. The mean PA diameter was 34.2 ± 6.2 mm and was not significantly different among all the diagnosis groups. We found a weak correlation between PA diameter and mean PA pressure ( r = 0.23, p < 0.001). Male sex, higher age, shorter 6MWD and higher NT-proBNP level were independently associated with mortality, but PA diameter was not.

Conclusion

The prognosis of PAH and CTEPH is still poor. Known predictors of survival were confirmed, but PA diameter at diagnosis was not associated with survival in PAH or CTEPH patients.

  相似文献   

13.
Stachybotrys chartarum, a ubiquitous fungus in our environment, has been suspected of causing respiratory symptoms in humans, such as acute infant pulmonary hemorrhage and asthma. We previously established a mouse model in which repeated inhalation of Stachybotrys chartarum spores caused pulmonary hypertension. To further investigate the model, particularly in the pulmonary circulation, mice were intra-tracheally injected with spores, 18 times over 12 weeks. Severe muscularization was observed in the small- to medium-sized pulmonary arteries. Bronchoalveolar lavage fluid revealed an increase in eosinophils accompanied by high concentrations of Th2-associated cytokines, IL-4, IL-5, but not Th1-associated IFN-γ. The remodeling was temporary, resolving after cessation of spore inhalation. Chronic inhibition of the RhoA/Rho-kinase pathway by fasudil attenuated pulmonary arterial remodeling. These data suggest that Stachybotrys-mediated remodeling is caused by Th2-associated inflammation and can be resolved by Rho-kinase inhibition, either through direct effects on smooth muscle hypertrophy or through indirect effects on vascular inflammation. These data also show that extensive pulmonary vascular remodeling, often thought of as a fixed lesion, will spontaneously resolve in the absence of underlying molecular etiology.  相似文献   

14.

Background

Glycosylated hemoglobin A1c (HbA1c) has been proposed as an independent predictor of long-term prognosis in pulmonary arterial hypertension. However, the clinical relevance of HbA1c in patients with operable chronic thromboembolic pulmonary hypertension (CTEPH) remains unknown. The aim of the present study was to investigate the clinical significance of HbA1c as a biomarker in CTEPH.

Methods

Prospectively, 102 patients underwent pulmonary endarterectomy (PEA) in our national referral center between March 2013 and March 2014, of which after exclusion 45 patients were analyzed. HbA1c- levels, hemodynamic and exercise parameters were analyzed prior and one-year post-PEA.

Results

45 patients (BMI: 27.3 ± 6.0 kg/m2; age: 62.7 ± 12.3 years) with a mean pulmonary arterial pressure (mPAP) of 43.6 ± 9.4 mmHg, a pulmonary vascular resistance (PVR) of 712.1 ± 520.4 dyn*s/cm5, a cardiac index (CI) of 2.4 ± 0.5 l/min/m2 and a mean HbA1c-level of 39.8 ± 5.6 mmol/mol were included. One-year post-PEA pulmonary hemodynamic and functional status significantly improved in our cohort. Baseline HbA1c-levels were significantly associated with CI, right atrial pressure, peak oxygen uptake and the change of 6-minute walking distance using linear regression analysis. However, using logistic regression analysis baseline HbA1c-levels were not significantly associated with residual post-PEA PH.

Conclusions

This is the first prospective study to describe an association of HbA1c-levels with pulmonary hemodynamics and exercise capacity in operable CTEPH patients. Our preliminary results indicate that in these patients impaired glucose metabolism as assessed by HbA1c is of clinical significance. However, HbA1c failed as a predictor of the hemodynamic outcome one-year post-PEA.  相似文献   

15.

Background

The objective of this study was to evaluate the imaging characteristics of pulmonary artery sarcoma (PAS) on pulmonary artery computed tomography angiography (PACTA) that can be used to differentiate between PAS and pulmonary thromboembolic diseases, including chronic thromboembolic pulmonary hypertension (CTEPH) and acute pulmonary embolism (APE).

Methods

The clinical data and imaging characteristics of 12 patients with PAS, 156 patients with CTEPH, and 426 patients with APE who were treated at Beijing Anzhen Hospital from January 2007 to August 2013 were retrospectively analyzed. All patients underwent PACTA before treatment, and the diagnoses of PAS and CTEPH were all confirmed by surgical biopsy.

Results

All 12 PAS patients were initially misdiagnosed and received inappropriate thrombolytic and/or anticoagulant therapy before they were referred for surgical intervention. The mean time from PACTA to surgical intervention was 5.5±3.7 months (range 2–11 months). On PACTA, the PAS lesion always eclipsed the wall of the pulmonary artery before infiltrating outside the pulmonary artery, which was termed the wall eclipsing sign. This sign was observed in all PAS patients but was not observed in any CTEPH or APE patients.

Conclusions

PAS is a rare neoplasm with a poor prognosis, and is easily misdiagnosed as thromboembolic disease. The wall eclipsing sign on PACTA is pathognomonic for PAS, and patients with this sign should be investigated to confirm the diagnosis and should undergo surgical intervention as soon as possible, rather than receiving thrombolytic or anticoagulant therapy.  相似文献   

16.
Primary pulmonary hypertension is a rare but deadly disease. Lungs extracted from PPH patients are deficient in endothelial nitric oxide synthase (eNOS), making the eNOS-null mouse a potentially useful model of the disease. To better understand the progression of pulmonary vascular remodeling in the congenital absence of eNOS, we induced pulmonary hypertension in eNOS-null mice using hypobaric hypoxia, and then quantified large artery structure and function in contralateral vessels. In particular, to assess structure we quantified diameter, wall thickness, and collagen, elastin and smooth muscle cell content; to quantify function we performed pressure-diameter tests. After remodeling, the pulmonary arteries had increased wall, collagen and elastin thicknesses compared to controls (P<0.05). The remodeled pulmonary arteries also had increased elastic moduli at low and high strains compared to controls (P<0.05). The increases in moduli at low and high strain correlated with increases in elastin and collagen thickness, respectively (P<0.05). These results provide insight into the mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS, and the coupled nature of these changes.  相似文献   

17.
Tumor necrosis factor-alpha (TNF-alpha) transgenic mice have previously been found to have characteristics consistent with emphysema and severe pulmonary hypertension. Lungs demonstrated alveolar enlargement as well as interstitial thickening due to chronic inflammation and perivascular fibrosis. In the present report, we sought to determine potential mechanisms leading to development of pulmonary hypertension in TNF-alpha transgenic mice. To determine whether sustained vasoconstriction was an important component of this pulmonary hypertension, nitric oxide was administered and hemodynamics were measured. Nitric oxide (25 ppm) failed to normalize right ventricular pressure in transgene-positive mice, suggesting that the pulmonary hypertension was not due to sustained vasoconstriction. Structural analysis of the pulmonary arteries found adventitial thickening and a trend toward medial hypertrophy in pulmonary arteries of transgene-positive mice, suggesting that vascular remodeling had occurred. Echocardiographic measurement of the percent fractional shortening of the left ventricle as a measurement of ventricular function in vivo revealed that left ventricular dysfunction was not contributing to pulmonary hypertension. We examined expression of genes known to be important in regulation of vascular tone and structure. Messenger RNA expression of vascular endothelial growth factor and its receptor flk-1 was reduced compared with transgene-negative littermates at all ages. Endothelial and inducible nitric oxide synthase mRNA levels were similar in both groups. Endothelin-1 mRNA was also decreased in TNF-alpha transgenic mice. Interestingly, female transgenic mice had decreased survival rate compared with male transgenic mice. We conclude that chronic overexpression of TNF-alpha is associated with decreased vascular endothelial growth factor and flk-1 gene expression, pulmonary vascular remodeling, and severe pulmonary hypertension, although the precise mechanism is unknown.  相似文献   

18.
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of the pulmonary pressures that, in the absence of therapy, results in chronic right-heart failure and premature death. The vascular pathology of PAH is characterized by progressive loss of small (diameter, less than 50 μm) peripheral pulmonary arteries along with abnormal medial thickening, neointimal formation, and intraluminal narrowing of the remaining pulmonary arteries. Vascular pathology correlates with disease severity, given that hemodynamic effects and disease outcomes are worse in patients with advanced compared with lower-grade lesions. Novel imaging tools are urgently needed that demonstrate the extent of vascular remodeling in PAH patients during diagnosis and treatment monitoring. Optical coherence tomography (OCT) is a catheter-based intravascular imaging technique used to obtain high-resolution 2D and 3D cross-sectional images of coronary arteries, thus revealing the extent of vascular wall pathology due to diseases such as atherosclerosis and in-stent restenosis; its utility as a diagnostic tool in the assessment of the pulmonary circulation is unknown. Here we show that OCT provides high-definition images that capture the morphology of pulmonary arterial walls in explanted human lungs and during pulmonary arterial catheterization of an adult pig. We conclude that OCT may facilitate the evaluation of patients with PAH by disclosing the degree of wall remodeling present in pulmonary vessels. Future studies are warranted to determine whether this information complements the hemodynamic and functional assessments routinely performed in PAH patients, facilitates treatment selection, and improves estimates of prognosis and outcome.Abbreviations: OCT, optical coherence tomography; PAC, pulmonary artery catheter; PAH, pulmonary arterial hypertensionPulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of pulmonary pressures that, when untreated, can lead to chronic right heart failure and death.14 The vascular pathology of PAH is characterized by neointimal formation, medial thickening, intravascular thrombi and, in severe cases, intravascular clusters of disorganized endothelial cells that give rise to tortuous endovascular channels.8 Most of the early vascular lesions are found in small (diameter, less than 50 μm) pulmonary arteries. However, as the disease advances, pulmonary arteries (diameter, 50 μm or larger) proximal to these lesions also display evidence of luminal narrowing and medial thickening.7,8,15 Most patients with PAH are younger than those with chronic systemic vascular disorders (that is, coronary artery disease, peripheral vascular disease, systemic hypertension), whose vascular pathology involves mostly large to medium-sized arteries. However, both patient populations demonstrate various pathologic features, including vascular smooth-cell accumulation, neointimal formation, inflammation, luminal narrowing, and alterations in the composition of the extracellular matrix.6,17The only definite way to diagnose PAH is through right heart catheterization to directly measure the pressure in the pulmonary circulation. Although pulmonary angiography during right heart catheterization cannot be used to diagnose PAH, it provides supportive evidence of PAH by demonstrating significant peripheral small vessel loss and luminal narrowing in the remaining central vessels. Angiography can help clinicians visualize pulmonary vessels in real time, but this diagnostic technique has important limitations. The use of ionized contrast can cause allergic reactions and may trigger acute renal failure due to contrast-induced nephropathy.26 In addition, pulmonary angiography provides information regarding gross vessel appearance and small vessel perfusion but not about the state of vascular wall remodeling or the extent of luminal narrowing associated with PAH at any stage.5,16 Therefore, imaging techniques are urgently needed that complement the hemodynamic information obtained via right heart catheterization with a safe and reproducible method to assess vascular wall pathology, thereby allowing clinicians to correlate the clinical evolution of PAH with the progression of vascular pathology.The last decade has seen tremendous progress in the development of intravascular imaging modalities that can identify patients at risk for developing complications related to systemic vascular disease and therefore prevent disease-related morbidity and mortality.4 One such modality is optical coherence tomography (OCT), an imaging technique that uses a thin (diameter, 1.0 mm) wire and near-infrared light to capture micrometer-resolution, 3D images from within optical scattering media (for example, biologic tissue).1 Superior to other intravascular imaging techniques, OCT is frequently used in patients with coronary artery disease, where it provides high-resolution images of the coronary arterial wall that correlate highly with pathology seen in explanted vessels.10,11,21 To date, several small studies have demonstrated the application of OCT to the evaluation of vascular remodeling in both idiopathic PAH and chronic thromboembolic PAH.7,21 However, despite OCT''s obvious advantages in the characterization of vascular remodeling in discrete segments of the pulmonary circulation, whether OCT provides anatomic information across the length of the pulmonary artery has not been tested.Here, we report the capacity of OCT to obtain both longitudinal and cross-sectional images that provide accurate anatomic information on healthy pulmonary arteries in explanted human lungs and during the pulmonary arterial catheterization of a live adult pig (Sus scrofa domesticus).  相似文献   

19.
目的:探讨内质网应激(ERS)对肺动脉平滑肌细胞表型转化的影响。方法:采用胶原酶Ⅰ消化法培养原代大鼠肺动脉平滑肌细胞(PASMCs),用衣霉素(TM)或4-苯基丁酸(4-PBA)诱导或抑制内ERS,MTS法评价细胞增殖情况,western blot和定量RT-PCR检测蛋白和mRNA表达情况。结果:TM呈浓度依赖性诱导内质网应激标志物GRP78和XBP1 mRNA表达;较低浓度的TM促进PASMCs增殖,高浓度(5μg/mol)使细胞凋亡;TM使PASMCs表达SM22 alpha减少,分泌Ⅰ型胶原增加;4-PBA预处理可逆转TM诱导PASMCs的SM22 alpha减少和Ⅰ型胶原分泌增加。结论:内质网应激促进肺动脉平滑肌细胞表型转化,可能是内质网应激参与肺动脉高压的机制之一。  相似文献   

20.
该文应作者要求已撤稿。肺动脉平滑肌细胞(PASMCs)的迁移和增殖是肺动脉重塑进而造成肺动脉高压的主要病理基础。水通道蛋白1(AQP1)具有促进上皮细胞、内皮细胞迁移的作用,但机制不清。由于AQP1也表达于血管平滑肌细胞,推测AQP1可能参与缺氧诱导的PASMCs增殖及迁移。通过PCR和免疫印迹分析,检测AQP的表达以及缺氧对AQP表达水平的影响,并通过细胞迁移以及增殖实验观察AQP1在缺氧诱导的PASMCs迁移与增殖中的作用。AQP1在PASMCs和主动脉平滑肌细胞(AoSMCs)均表达,但缺氧只增加PASMCs中AQP1的表达,以及促进PASMCs的迁移与增殖。敲除AQP1可抑制PASMCs的增殖以及缺氧诱导的细胞增殖和迁移。过表达AQP1促进PASMCs的增殖和迁移。缺氧促进β联蛋白在PASMCs内的表达。敲除β联蛋白后,抑制AdAQP1所介导的PASMCs迁移与增殖。这些结果表明,缺氧可促进AQP1在肺动脉内的表达,AQP1可通过β联蛋白对PASMCs的增殖和迁移进行调节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号