首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
mRNA的可变剪接(alternative splicing)是一种由一个mRNA前体(pre-mRNA)通过不同的剪接方式产生多个mRNA变异体(variants)的RNA加工过程。在过去很长一段时间里,人们认为mRNA剪接过程是独立于转录过程的一个转录后RNA加工过程。然而,越来越多的实验证明mRNA剪接在很大程度上是与转录偶联发生的。因此,剪接调控会受到与转录相关因素的调控。本文将对染色质与mRNA剪接调控的相关性和染色质结构调控可变剪接的分子机制进行阐述。  相似文献   

4.
Insights into the connection between cancer and alternative splicing   总被引:3,自引:1,他引:2  
  相似文献   

5.
6.
7.
8.
There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells.  相似文献   

9.
Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.  相似文献   

10.
11.
H Lowman  M Bina 《Biopolymers》1990,30(9-10):861-876
Previous studies demonstrated 16 well-defined nucleosome locations (A-P) on a tandemly repeated prototype 234 base pair (bp) mouse satellite repeat unit. We have aligned the A-P fragments to search for DNA sequence elements that might contribute to nucleosome placement at these positions. Our results demonstrate a strikingly regular, uninterrupted, periodic pattern for the AA dinucleotide occurrences along the entire length of the aligned fragments. The periodicity of the AA occurrences is about 9.7 bp. The pattern exhibits a local minimum at position 74, near the nucleosome dyad axis of symmetry. Other dinucleotides--including AC: GT, CA: TG, and CC: GG--are also placed periodically, but their patterns of occurrence are less regular and less frequent than AA. The calculated spacings between consecutive preferred nucleosome locations on mouse satellite DNA are nearly identical, corresponding to multiples of 9.7 bp. The correlation between the periodicity of dinucleotide occurrences and the average spacing of nucleosome positions suggests that the preferred nucleosome locations recur at intervals that may correspond to the DNA helical repeat in the mouse satellite nucleosomes, and that the histone octamers sample (or slip along) the duplex in steps of 9.7 bp during nucleosome formation on mouse satellite DNA.  相似文献   

12.
13.
The completion of excision repair patches in human cells, following UV irradiation, was compared to the refolding of these regions into nucleosomes. Incomplete repair patches were detected by their enhanced sensitivity to exonuclease III. This enhanced sensitivity was due to the presence of gaps (or displaced parental strands) at the 3' end rather than unligated nicks, indicating that ligation occurs rapidly after repair synthesis is completed. Different rates of completion were achieved by treatment with the inhibitors hydroxyurea and sodium butyrate, as well as by using a (partially) ligase-deficient human cell strain. Hydroxyurea caused a marked decrease in both the rate of completion and the level of repair incorporation in all three cell types studied, while sodium butyrate yielded different effects in each cell type. In each case, however, a decrease in the rate of repair patch completion resulted in a concomitant decrease in the level of nucleosome formation. To determine the temporal relationship of these two events, the levels of repair-incorporated nucleotides in isolated 146-base pair nucleosome core DNA were compared on native and denaturing gels. The data indicate that little (or no) nucleosome formation occurred in the nascent DNA regions prior to ligation regardless of the cell type or treatment used. Furthermore, comparison of the fraction of unligated repair patches and the fraction of repair patches in a nonnucleosomal state indicated that in the absence of inhibitors there was a significant time lag between ligation and nucleosome formation. This lag time, however, decreased when cells were treated with hydroxyurea. Thus, the formation of nucleosomes in newly repaired regions of DNA occurred after the ligation step in all cases and these two features of the excision repair process are not "tightly coupled" events.  相似文献   

14.
15.
In eukaryotic genomes, nucleosomes are responsible for packaging DNA and controlling gene expression. For this reason, an increasing interest is arising on computational methods capable of predicting the nucleosome positioning along genomes. In this review we describe and compare bioinformatic and physical approaches adopted to predict nucleosome occupancy along genomes. Computational analyses attempt at decoding the experimental nucleosome maps of genomes in terms of certain dinucleotide step periodicity observed along DNA. Such investigations show that highly significant information about the occurrence of a nucleosome along DNA is intrinsic in certain features of the sequence suggesting that DNA of eukaryotic genomes encodes nucleosome organization. Besides the bioinformatic approaches, physical models were proposed based on the sequence dependent conformational features of the DNA chain, which govern the free energy needed to transform recurrent DNA tracts along the genome into the nucleosomal shape.  相似文献   

16.
Changes in the phenotype that characterizes cancer cells are partly due to altered processing of pre-mRNA by the spliceosome. We have previously reported that aberrant splicing plays an essential role in the impaired response of hepatocellular carcinoma (HCC) to sorafenib by reducing the expression of functional organic cation transporter type 1 (OCT1, gene SLC22A1) that constitutes the primary way for HCC cells to take up this and other drugs. The present study includes an in silico analysis of publicly available databases to investigate the relationship between alternative splicing of SLC22A1 pre-mRNA and the expression of genes involved in the exon-recognition machinery in HCC and adjacent non-tumor tissue. Using Taqman Low-Density Arrays, the findings were validated in 25 tumors that were resected without neoadjuvant chemotherapy. The results supported previous reports showing that there was a considerable degree of alternative splicing of SLC22A1 in adjacent non-tumor tissue, which was further increased in the tumor in a stage-unrelated manner. Splicing perturbation was associated with changes in the profile of proteins determining exon recognition. The results revealed the importance of using paired samples for splicing analysis in HCC and confirmed that aberrant splicing plays an essential role in the expression of functional OCT1. Changes in the exon recognition machinery may also affect the expression of other proteins in HCC. Moreover, these results pave the way to further investigations on the mechanistic bases of the relationship between the expression of spliceosome-associated genes and its repercussion on the appearance of alternative and aberrant splicing in HCC.  相似文献   

17.
18.
19.
《Cellular signalling》2014,26(10):2234-2239
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.  相似文献   

20.
The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3' end of introns, with distance to the 3' splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号