首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapy-induced senescence (TIS), a cytostatic stress response in cancer cells, is induced inefficiently by current anticancer agents and radiation. The mechanisms that mediate TIS in cancer cells are not well defined. Herein, we characterize a robust senescence response both in vitro and in vivo to the quinone diaziquone (AZQ), previously identified in a high-throughput senescence-induction small-molecule screen. Using AZQ and several other agents that induce senescence, we screened a series of cyclin-dependent kinase inhibitors and found that p27(Kip1) was induced in all investigated prostate cancer cell lines. The ubiquitin-ligase Skp2 negatively regulates p27(Kip1) and, during TIS, is translocated to the cytoplasm before its expression is decreased in senescent cells. Overexpression of Skp2 blocks the effects of AZQ on senescence and p27(Kip1) induction. We also find that stable long-term short hairpin RNA knockdown of Skp2 decreases proliferation but does not generate the complete senescence phenotype. We conclude that Skp2 participates in regulating TIS but, alone, is insufficient to induce senescence in cancer cells.  相似文献   

2.
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.  相似文献   

3.
4.
The elevated incidence of aneuploidy in human oocytes warrants study of the molecular mechanisms regulating proper chromosome segregation. The Aurora kinases are a well‐conserved family of serine/threonine kinases that are involved in proper chromosome segregation during mitosis and meiosis. Here we report the expression and localization of all three Aurora kinase homologs, AURKA, AURKB, and AURKC, during meiotic maturation of mouse oocytes. AURKA, the most abundantly expressed homolog, localizes to the spindle poles during meiosis I (MI) and meiosis II (MII), whereas AURKB is concentrated at kinetochores, specifically at metaphase of MI (Met I). The germ cell‐specific homolog, AURKC, is found along the entire length of chromosomes during both meiotic divisions. Maturing oocytes in the presence of the small molecule pan‐Aurora kinase inhibitor, ZM447439 results in defects in meiotic progression and chromosome alignment at both Met I and Met II. Over‐expression of AURKB, but not AURKA or AURKC, rescues the chromosome alignment defect suggesting that AURKB is the primary Aurora kinase responsible for regulating chromosome dynamics during meiosis in mouse oocytes. Mol. Reprod. Dev. 76: 1094–1105, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Aurora B kinase (AURKB) is the catalytic subunit of the chromosomal passenger complex (CPC), an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT) attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I). We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction.  相似文献   

6.
The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.  相似文献   

7.
Protein kinases play key roles in regulating human cell biology, but manifold substrates and functions make it difficult to understand mechanism. We tested whether we could dissect functions of a pleiotropic mitotic kinase, Polo-like kinase 1 (Plk1), via distinct thresholds of kinase activity. We accomplished this by titrating Plk1 activity in RPE1 human epithelial cells using chemical genetics and verifying results in additional lines. We found that distinct activity thresholds are required for known functions of Plk1 including (from low to high activity) bipolar spindle formation, timely mitotic entry, and formation of a cytokinesis cleavage furrow. Subtle losses in Plk1 activity impaired chromosome congression and produced severe anaphase dysfunction characterized by poor separation of chromosome masses. These two phenotypes were separable, suggesting that they stem from distinct phosphorylation events. Impaired chromosome segregation in anaphase was the most sensitive to modest loss in Plk1 activity. Mechanistically, it was associated with unpaired sister chromatids with stretched kinetochores, suggestive of merotelic attachments. The C-terminal Polo box domain of Plk1 was required for its anaphase function, although it was dispensable for forming a bipolar spindle. The ultimate effect of partial inhibition of Plk1 was the formation of micronuclei, an increase in tetraploid progeny, and senescence. These results demonstrate that different thresholds of Plk1 activity can elicit distinct phenotypes, illustrating a general method for separating pleiotropic functions of a protein kinase even when these are executed close in time.  相似文献   

8.
Triploid and tetraploid strains of Saccharomyces cerevisiae were constructed and the spontaneous loss during mitosis of one, two or three copies of chromosome VII was determined. In one strain, a triploid (VM2) in which expression of the recessive alleles can be observed only after loss of two copies of chromosome VII (3N-2), the spontaneous frequency of chromosome loss was lower than in the diploid D61.M. In another strain, a tetraploid (VM4) that also requires the loss of two copies of chromosome VII for observation (4N-2) of the recessive alleles, the spontaneous frequency was slightly higher than in the diploid D61.M. The spontaneous frequency of other genetic events (that is, mutation, recombination or chromosome breakage) were lower by 2-3 orders of magnitude than in the diploid strain D61.M. Induction of chromosome loss and other genetic events by nocodazole, ethyl acetate, hydroxyurea and ethyl methanesulfonate was determined in D61.M, VM2, and VM4, and the results were compared. Nocodazole and ethyl acetate induced chromosome loss in both the triploid and the tetraploid strains at lower concentrations than required in the diploid. These compounds also induced elevated frequencies of other genetic events in both the triploid and the tetraploid strains but not in the diploid. Hydroxyurea induced elevated frequencies of chromosome loss in the diploid and the tetraploid. Frequencies of chromosome loss in the triploid treated with hydroxyurea, although elevated, are based on observation of very few colonies of the correct phenotype. Ethyl methanesulfonate failed to induce chromosome loss in any of the three strains. Hydroxyurea and ethyl methanesulfonate did, however, induce very high frequencies of other genetic events.  相似文献   

9.
A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore–microtubule attachments and recruit SAC regulator proteins. In mice, oocyte‐specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II‐arrested eggs and premature age‐related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.  相似文献   

10.
Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.  相似文献   

11.
Normal cells in a culture enter a nondividing state after a finite number of population doubling, which is termed replicative senescence, whereas cancer cells have unlimited proliferative potential and are thought to exhibit an immmortal phenotype by escaping from senescence. The p21 gene (also known as sdi1), which encodes the cyclin-dependent kinase inhibitor, is expressed at high levels in senescent cells and contributes to the growth arrest. To examine if the p21sdi1 gene transfer could induce senescence in human cancer cells, we utilized an adenoviral vector-based expression system and four human cancer cell lines differing in their p53 status. Transient overexpression of p21sdi1 on cancer cells induced quiescence by arresting the cell cycle at the G1 phase and exhibited morphological changes, such as enlarged nuclei as well as a flattened cellular shape, specific to the senescence phenotype. We also showed that p21sdi1-transduced cancer cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Moreover, the polymerase chain reaction-based assay demonstrated that levels of telomerase activity were significantly lower in p21sdi1-expressing cells compared to parental cancer cells. These observations provide the evidence that p21sdi1 overexpression could induce a senescence-like state and reduce telomerase activity in human cancer cells, suggesting that these novel p21sdi1 functions may have important implications for anticancer therapy.  相似文献   

12.
Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59]  相似文献   

13.
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.  相似文献   

14.
Aurora kinases have become a hot topic for research as they have been found to play an important role in various stages of mitotic cell division and to participate in malignant conversions of tumors. The participation of Aurora kinases in the regulation of oocyte meiosis has been recently reported, but their participation in mammalian early embryonic development remained unclear. The object of our study was to establish the spatio-temporal expression pattern of Aurora kinase B (AURKB) in mouse zygotes during the first cleavage, to reveal its functions in the early development of mouse zygotes, and to define the involvement of AURKB in mitogen-activated protein kinase (MAPK) signaling. Our results showed that in mouse zygotes AURKB expression increased in G1 phase and peaked in M phase. AURKB protein distribution was found to be in association with nuclei and distributed throughout the cytoplasm in a cell cycle-dependent manner. Functional disruption of AURKB resulted in abnormal division phenotypes or mitotic impairments. U0126, a specific mitogen-activated protein kinase kinase (MEK) inhibitor, caused significantly altered morphologies of early embryos together with a decrease in protein expression and kinase activity of AURKB. Our results indicated that the activity of AURKB was required for regulating multiple stages of mitotic progression in the early development of mouse zygotes and was correlated with the activation of the MAPK pathway.  相似文献   

15.
High-content screening has emerged as a new and powerful technique for identifying small-molecule modulators of mammalian cell biology. The authors describe the development and execution of a high-content screen to identify small molecules that induce mitotic arrest in mammalian cancer cells. Many widely used chemotherapeutics, such as Taxol and vinblastine, induce mitotic arrest, and the creation of new drugs that also induce mitotic arrest may have tremendous therapeutic value. In their screen, the authors employed a simple DNA stain (DAPI) and a sensitive nonparametric statistical test to identify compounds from an internal collection of approximately 13,000 high-quality lead-like small molecules. Subsequent analysis of 1 active compound indicated that it induces mitotic arrest, assessed using a high-content phosphohistone H3 detection assay, and caused cell proliferation defects in multiple cancer cell lines. The active compound, a quinazolinone originating from a natural product-like subset of the screened compounds, is active in cells at approximately 500 nM and appears to act by inhibiting the polymerization of tubulin.  相似文献   

16.
17.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   

18.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   

19.
The Ras oncoprotein is a key driver of cancer. However, Ras also provokes senescence, which serves as a major barrier to Ras-driven transformation. Ras senescence pathways remain poorly characterized. NORE1A is a novel Ras effector that serves as a tumor suppressor. It is frequently inactivated in tumors. We show that NORE1A is a powerful Ras senescence effector and that down-regulation of NORE1A suppresses senescence induction by Ras and enhances Ras transformation. We show that Ras induces the formation of a complex between NORE1A and the kinase HIPK2, enhancing HIPK2 association with p53. HIPK2 is a tumor suppressor that can induce either proapoptotic or prosenescent posttranslational modifications of p53. NORE1A acts to suppress its proapoptotic phosphorylation of p53 but enhance its prosenescent acetylation of p53. Thus, we identify a major new Ras signaling pathway that links Ras to the control of specific protein acetylation and show how NORE1A allows Ras to qualitatively modify p53 function to promote senescence.  相似文献   

20.
Deletion and mutation of phosphatase and tensin homolog deleted on chromosome10 (PTEN) are closely associated with the occurrence of tumors. Tumor suppressor gene PTEN mutation plays an important role in the pathogenesis of ovarian cancer. However, it has been unclear whether it can regulate the senescence of ovarian cancer cells. We speculated that PTEN might inhibit the occurrence and development of ovarian cancer by promoting the expression of P21. We found that the expression of TRIM39 in human ovarian cancer was significantly diminished. In SKOV3 cells treated with naringin, the expression of TRIM39, which binds P21 and inhibits P21 degradation, was significantly elevated. Real-time polymerase chain reaction (PCR), Western blot, and immunofluorescence were used to detected the expression of PTEN, p21, and TRIM39, β-galactosidase Staining was used to detect cell senescence, Ki67 staining was used to observe cell proliferation, Trim39 interference or overexpression assay was used to detect its function. We speculated that PTEN might promote SKOV3 cell senescence by increasing TRIM39 expression and decreasing P21 degradation. Furthermore, by interfering with TRIM39 in SKOV3 cells, we found that the expression of P21 was downregulated, and the number of senescent SKOV3 cells decreased. With overexpression of TRIM39 in SKOV3 cells, the expression of P21 was upregulated, and the number of senescent SKOV3 cells increased. When naringin, a PTEN agonist, was added to SKOV3 cells in which TRIM39 protein was interfered with, the expression of P21 was significantly lower than that in the control group, and the number of senescent ovarian cancer cells was significantly diminished. Our results indicated that PTEN maintained the stability of P21 and decreased the degradation of P21 by increasing TRIM39 expression, thus promoting the senescence of SKOV3 cells, and PTEN maintained the stability of p21 and promoted the aging of SKOV3 cells might be a novel therapeutic target for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号