首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic Resonance Elastography (MRE) is an emerging imaging modality for quantifying soft tissue elasticity deduced from displacement measurements within the tissue obtained by phase sensitive Magnetic Resonance Imaging (MRI) techniques. MRE has potential to detect a range of pathologies, diseases and cancer formations, especially tumors. The mechanical model commonly used in MRE is linear viscoelasticity (VE). An alternative Rayleigh damping (RD) model for soft tissue attenuation is used with a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct viscoelastic properties, energy attenuation mechanisms and concomitant damping behavior of the tissue-simulating phantoms. This research performs a thorough evaluation of the RD model in MRE focusing on unique identification of RD parameters, μIμI and ρIρI.  相似文献   

2.

Purpose

To develop a reliable magnetic resonance elastography (MRE)-based method for measuring regional brain stiffness.

Methods

First, simulation studies were used to demonstrate how stiffness measurements can be biased by changes in brain morphometry, such as those due to atrophy. Adaptive postprocessing methods were created that significantly reduce the spatial extent of edge artifacts and eliminate atrophy-related bias. Second, a pipeline for regional brain stiffness measurement was developed and evaluated for test-retest reliability in 10 healthy control subjects.

Results

This technique indicates high test-retest repeatability with a typical coefficient of variation of less than 1% for global brain stiffness and less than 2% for the lobes of the brain and the cerebellum. Furthermore, this study reveals that the brain possesses a characteristic topography of mechanical properties, and also that lobar stiffness measurements tend to correlate with one another within an individual.

Conclusion

The methods presented in this work are resistant to noise- and edge-related biases that are common in the field of brain MRE, demonstrate high test-retest reliability, and provide independent regional stiffness measurements. This pipeline will allow future investigations to measure changes to the brain’s mechanical properties and how they relate to the characteristic topographies that are typical of many neurologic diseases.  相似文献   

3.

Objective

To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB).

Methods

Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz.

Results

Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07). |G*|, which in solids more relates to the material''s stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001). However, some GB (5 of 22) showed increased stiffness.

Conclusion

GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.  相似文献   

4.
Traditional mechanical testing often results in the destruction of the sample, and in the case of long term tissue engineered construct studies, the use of destructive assessment is not acceptable. A proposed alternative is the use of an imaging process called magnetic resonance elastography. Elastography is a nondestructive method for determining the engineered outcome by measuring local mechanical property values (i.e., complex shear modulus), which are essential markers for identifying the structure and functionality of a tissue. As a noninvasive means for evaluation, the monitoring of engineered constructs with imaging modalities such as magnetic resonance imaging (MRI) has seen increasing interest in the past decade1. For example, the magnetic resonance (MR) techniques of diffusion and relaxometry have been able to characterize the changes in chemical and physical properties during engineered tissue development2. The method proposed in the following protocol uses microscopic magnetic resonance elastography (μMRE) as a noninvasive MR based technique for measuring the mechanical properties of small soft tissues3. MRE is achieved by coupling a sonic mechanical actuator with the tissue of interest and recording the shear wave propagation with an MR scanner4. Recently, μMRE has been applied in tissue engineering to acquire essential growth information that is traditionally measured using destructive mechanical macroscopic techniques5. In the following procedure, elastography is achieved through the imaging of engineered constructs with a modified Hahn spin-echo sequence coupled with a mechanical actuator. As shown in Figure 1, the modified sequence synchronizes image acquisition with the transmission of external shear waves; subsequently, the motion is sensitized through the use of oscillating bipolar pairs. Following collection of images with positive and negative motion sensitization, complex division of the data produce a shear wave image. Then, the image is assessed using an inversion algorithm to generate a shear stiffness map6. The resulting measurements at each voxel have been shown to strongly correlate (R2>0.9914) with data collected using dynamic mechanical analysis7. In this study, elastography is integrated into the tissue development process for monitoring human mesenchymal stem cell (hMSC) differentiation into adipogenic and osteogenic constructs as shown in Figure 2.  相似文献   

5.
Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.  相似文献   

6.
采用大腿肌肉注射法建立兔VX2肿瘤模型,于造模后第7天、14天及21天进行磁共振成像(MRI)平扫、增强及扩散加权成像(DWI)检查,观察不同时期MRI表现。并于造模后第21天对照大体标本测量结果比较DWI及T2WI图像肿瘤最大径,同时比较肿瘤实体部分与髂窝内转移淋巴结的表观弥散系数(ADC)值。结果显示,造模后第7天,12只模型兔MRI常规及DWI图像均可见成瘤;第14天,2例肿瘤内出现坏死灶;第21天,12例肿瘤内均出现坏死,DWI图像可发现局部淋巴结转移灶,DWI及T2WI图像肿瘤最大径与大体标本测量结果差别无统计学意义。髂窝内转移淋巴结的ADC值与原发肿瘤实体部分ADC值间差别无统计学意义。DWI可以监测兔大腿VX2肿瘤生长,有效区分肿瘤早期坏死成分,并判断相应引流区域淋巴结的性质。  相似文献   

7.
We present a postural analysis of diaphragm function using magnetic resonance imaging (MRI). The main aim of the study was to identify changes in diaphragm motion and shape when postural demands on the body were increased (loading applied to a distal part of the extended lower extremities against the flexion of the hips was used). Sixteen healthy subjects were compared with 17 subjects suffering from chronic low back pain and in whom structural spine disorders had been identified. Two sets of features were calculated from MRI recordings: dynamic parameters reflecting diaphragm action, and static parameters reflecting diaphragm anatomic characteristics. A statistical analysis showed that the diaphragm respiratory and postural changes were significantly slower, bigger in size and better balanced in the control group. When a load was applied to the lower limbs, the pathological subjects were mostly not able to maintain the respiratory diaphragm function, which was lowered significantly. Subjects from the control group showed more stable parameters of both respiratory and postural function. Our findings consistently affirmed worse muscle cooperation in the low back pain population subgroup. A clear relation with spinal findings and with low back pain remains undecided, but various findings in the literature were confirmed. The most important finding is the need to further address various mechanisms used by patients to compensate deep muscle insufficiency.  相似文献   

8.

Objectives

To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally.

Materials and Methods

A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences.

Results

The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions.

Conclusion

Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain.  相似文献   

9.
10.
Long term liver-related complications of type-1 Gaucher disease (GD), a lysosomal storage disorder, include fibrosis and an increased incidence of hepatocellular carcinoma. Splenectomy has been implicated as a risk factor for the development of liver pathology in GD. High ferritin concentrations are a feature of GD and iron storage in Gaucher cells has been described, but iron storage in the liver in relation to liver fibrosis has not been studied. Alternatively, iron storage in GD may be the result of iron supplementation therapy or regular blood transfusions in patients with severe cytopenia. In this pilot study, comprising 14 type-1 GD patients (7 splenectomized, 7 non-splenectomized) and 7 healthy controls, we demonstrate that liver stiffness values, measured by Transient Elastography and MR-Elastography, are significantly higher in splenectomized GD patients when compared with non-splenectomized GD patients (p = 0.03 and p = 0.01, respectively). Liver iron concentration was elevated (>60±30 µmol/g) in 4 GD patients of whom 3 were splenectomized. No relationship was found between liver stiffness and liver iron concentration. HFE gene mutations were more frequent in splenectomized (6/7) than in non-splenectomized (2/7) participants (p = 0.10). Liver disease appeared more advanced in splenectomized than in non-splenectomized patients. We hypothesize a relationship with excessive hepatic iron accumulation in splenectomized patients. We recommend that all splenectomized patients, especially those with evidence of substantial liver fibrosis undergo regular screening for HCC, according to current guidelines.  相似文献   

11.

Objective

The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications.

Methods

MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes.

Results

A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA.

Conclusions

A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately.  相似文献   

12.
Large White male turkeys were sacrificed at 4-week intervals from 4 to 28 weeks of age to study the fatty acid distribution in lipid of breast and thigh muscles. A total of 70 turkeys were sampled for this experiment.

Fatty acid distribution varied with advancing maturity and between muscle types. The most abundant fatty acids in the tissues were those with carbon chain lengths of 15:0, 16:0, 18:0, 18:1, 18:2, 20:4 and 24:0. Thigh muscle contained significantly more linoleate (18:2) than did breast. Larger proportions of pentadecanoic (15:0), arachidonic (20:4) and lignoceric (24:0), however, appeared in breast. Indications of minor fatty acids appeared on the chromatograms, but their low concentrations made their estimation and identification difficult.  相似文献   

13.

Purpose

Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging.

Methods

For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed.

Results

The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging.

Conclusion

SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging.  相似文献   

14.
We introduce the behavior of the electrical output response of a magnetic field sensor based on microelectromechanical systems (MEMS) technology under different levels of controlled magnetic noise. We explored whether a particular level of magnetic noise applied on the vicinity of the MEMS sensor can improve the detection of subthreshold magnetic fields. We examined the increase in the signal-to-noise ratio (SNR) of such detected magnetic fields as a function of the magnetic noise intensity. The data disclosed an inverted U-like graph between the SNR and the applied magnetic noise. This finding shows that the application of an intermediate level of noise in the environment of a MEMS magnetic field sensor improves its detection capability of subthreshold signals via the stochastic resonance phenomenon.  相似文献   

15.

Purpose

To compare the accuracy of magnetic resonance elastography (MRE) with that of aspartate aminotransferase-to-platelet ratio index (APRI) for estimating the stage of hepatic fibrosis in patients with chronic hepatitis B virus (HBV) or chronic hepatitis C virus (HCV) infection.

Materials and Methods

We retrospectively enrolled 160 patients with chronic hepatitis and 25 healthy living liver donors. Fibrosis stage (METAVIR, F0 to F4) was determined histopathologically for all patients. APRI was recorded at the time of histopathologic examination and liver stiffness values were measured on MRE quantitative stiffness maps. The cutoff values, sensitivity, and specificity of MRE and APRI for each fibrosis stage were determined using receiver operating characteristic (ROC) analysis.

Results

MRE had a significantly greater area under the ROC curve than APRI score for discriminating among METAVIR stages F2-F4. Using a cutoff value of 2.80 kPa, MRE had a sensitivity of 94.4% and a specificity of 97.8% for detecting significant fibrosis (≥F2). There were no significant differences in fibrosis stage between patients with HBV and those with HCV infection. For ≥F2, the cutoffs were 2.47 kPa (100% sensitivity), 2.80 kP (maximum sum of sensitivity and specificity), and 3.70 kPa (100% specificity).

Conclusions

MRE is a more accurate modality than APRI for detecting significant fibrosis in patients with chronic HBV or HCV infection. Antiviral treatment should be considered in patients with liver stiffness values ≥ 2.8 kPa.  相似文献   

16.
With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation.  相似文献   

17.
Cardiovascular diseases can be diagnosed by assessing abnormal flow behavior in the heart. We introduce, for the first time, a magnetic resonance imaging-based diagnostic that produces sectional flow maps of cardiac chambers, and presents cardiac analysis based on the flow information. Using steady-state free precession magnetic resonance images of blood, we demonstrate intensity contrast between asynchronous and synchronous proton spins. Turbulent blood flow in cardiac chambers contains asynchronous blood proton spins whose concentration affects the signal intensities that are registered onto the magnetic resonance images. Application of intensity flow tracking based on their non-uniform signal concentrations provides a flow field map of the blood motion. We verify this theory in a patient with an atrial septal defect whose chamber blood flow vortices vary in speed of rotation before and after septal occlusion. Based on the measurement of cardiac flow vorticity in our implementation, we establish a relationship between atrial vorticity and septal defect. The developed system has the potential to be used as a prognostic and investigative tool for assessment of cardiac abnormalities, and can be exploited in parallel to examining myocardial defects using steady-state free precession magnetic resonance images of the heart.  相似文献   

18.
A practical method is described for determining some characteristics of the spectrum of proton mobilities in a hydrated system from the frequency dependence of the nuclear magnetic resonance (NMR) relaxation processes. The technique is applied to water in association with agarose and gelatin. The results for agarose are consistent with the hypothesis that a fraction of the protons is distributed over states of reduced mobility and exchanges rapidly with the remaining fraction which is attributed to water in the normal state. No variation in the characteristics of the modified fraction could be detected for water concentrations in the range 1.2-50 g H2O/g agarose. Within the modified fraction, higher mobilities are more common than low mobilities; at 1.2 g H2O/g agarose, not more than 10% of the proton population has mobilities more than 100 times smaller than normal. The modified proton fraction is tentatively identified with agarose hydroxyl protons and possibly water molecules bound to the polymer. Proton states with mobilities intermediate between water and ice have also been detected in hydrated gelatin. As in agarose, higher mobilities are the most common. In contrast to agarose, the characteristics of the modified proton states are markedly dependent on water concentration. They are tentatively attributed to gelatin protons coupled for spinlattice relaxation with those of the bulk phase by exchange and spin diffusion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号