首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disturbances such as disease can reshape communities through interruption of ecological interactions. Changes to population demographics alter how effectively a species performs its ecological role. While a population may recover in density, this may not translate to recovery of ecological function. In 2013, a sea star wasting syndrome outbreak caused mass mortality of the keystone predator Pisaster ochraceus on the North American Pacific coast. We analyzed sea star counts, biomass, size distributions, and recruitment from long‐term intertidal monitoring sites from San Diego to Alaska to assess regional trends in sea star recovery following the outbreak. Recruitment, an indicator of population recovery, has been spatially patchy and varied within and among regions of the coast. Despite sea star counts approaching predisease numbers, sea star biomass, a measure of predation potential on the mussel Mytilus californianus, has remained low. This indicates that post‐outbreak populations have not regained their full predation pressure. The regional variability in percent of recovering sites suggested differences in factors promoting sea star recovery between regions but did not show consistent patterns in postoutbreak recruitment on a coast‐wide scale. These results shape predictions of where changes in community composition are likely to occur in years following the disease outbreak and provide insight into how populations of keystone species resume their ecological roles following mortality‐inducing disturbances.  相似文献   

2.
Abstract

Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 104 to 105 cells cm?2 during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.  相似文献   

3.
The conditions leading to gigantism in nine‐spined sticklebacks Pungitius pungitius were analysed by modelling fish growth with the von Bertalanffy model searching for the optimal strategy when the model's growth constant and asymptotic fish size parameters are negatively related to each other. Predator‐related mortality was modelled through the increased risk of death during active foraging. The model was parameterized with empirical growth data of fish from four different populations and analysed for optimal growth strategy at different mortality levels. The growth constant and asymptotic fish size were negatively related in most populations. Optimal fish size, fitness and life span decreased with predator‐induced mortality. At low mortality, the fitness of pond populations was higher than that of sea populations. The differences disappeared at intermediate mortalities, and sea populations had slightly higher fitness at extremely high mortalities. In the scenario where all populations mature at the same age, the pond populations perform better at low mortalities and the sea populations at high mortalities. It is concluded that a trade‐off between growth constant and asymptotic fish size, together with different mortality rates, can explain a significant proportion of body size differentiation between populations. In the present case, it is a sufficient explanation of gigantism in pond P. pungitius.  相似文献   

4.
Aphanomyces astaci, the crayfish plague pathogen, first appeared in Europe in the mid-19th century and is still responsible for mass mortalities of native European crayfish. The spread of this parasite across the continent is especially facilitated by invasive North American crayfish species that serve as its reservoir. In France, multiple cases of native crayfish mortalities have been suggested to be connected with the presence of the signal crayfish Pacifastacus leniusculus, which is highly abundant in the country. It shares similar habitats as the native white-clawed crayfish Austropotamobius pallipes and, when infected, the signal crayfish might therefore easily transmit the pathogen to the native species. We investigated the prevalence of A. astaci in French signal crayfish populations to evaluate the danger they represent to local populations of native crayfish. Over 500 individuals of Pacifastacus leniusculus from 45 French populations were analysed, plus several additional individuals of other non-indigenous crayfish species Orconectes limosus, O. immunis and Procambarus clarkii. Altogether, 20% of analysed signal crayfish tested positive for Aphanomyces astaci, and the pathogen was detected in more than half of the studied populations. Local prevalence varied significantly, ranging from 0% up to 80%, but wide confidence intervals suggest that the number of populations infected by A. astaci may be even higher than our results show. Analysis of several individuals of other introduced species revealed infections among two of these, O. immunis and P. clarkii. Our results confirm that the widespread signal crayfish serves as a key reservoir of Aphanomyces astaci in France and therefore represents a serious danger to native crayfish species, especially the white-clawed crayfish. The prevalence in other non-indigenous crayfish should also be investigated as they likely contribute to pathogen transmission in the country.  相似文献   

5.
During abundance surveys of the nine-armed sea star Luidia senegalensis (Lamark, 1816) in shallow waters north of Cubagua Island, Venezuela, novel locomotive behaviour was recorded in one sea star. The animal was observed to ‘walk’ with four arms in contact with the benthos whilst the remaining five were held erect. This previously unreported means of locomotion may be: for chemosensory detection of the surroundings; to alter the characteristic track pattern left in sediments as a means to avoid detection by predators; or, to lift the arms to attract commensal cleaners, thus eliminating epibiont commensals that may occupy the ambulacral groove. Whilst the predators of L. senegalensis remain unknown, earlier observations of serranid fish biting this species may support the notion of this behaviour as a predator avoidance strategy.  相似文献   

6.
We analyzed the marine environmental setting to characterize the mass nesting habitat of Olive ridley sea turtles from three locations of the river mouth region i.e., Gahirmatha, Devi, and Rushikulya along the coast, of the Bay of Bengal. The environmental variables such as sea surface temperature (SST), ocean current, mixed layer depth, and chlorophyll-a (Chl-a) were analyzed to examine its influence on the mass nesting of sea turtles. The clear pattern of the mass population shows the nearshore and river mouth region of the nesting site throughout the inter-nesting range. The population was dense at the river mouth of Gahirmatha followed by Devi and Rushikulya. We found a significant linear relationship between the Chl-a and nesting population (r = 0.98, p ≤ 0.0001); and the SST and nesting population (r = 0.78, p ≤ 0.0001) at all river mouths. The conducive environmental threshold limit of SST and Chl-a was ≤29 0C and ≤ 0.5 mg m-3 respectively. The mass nesting, breeding, and migration of Olive ridley are attributed to the geomorphologic basin structure, physicochemical parameters, and feeding potential grounds in the coastal water. Inter nesting of movements in relation to the influential environment variables, the present and proposed regions for Olive ridley need to be implemented to provide comprehensive protection to both nesting populations and locations. The present study provides new knowledge on the linkage between the marine ecosystem and the mass nesting habitat of the sea turtle population for long-term monitoring, conservation application, and sustainable ecosystem management.  相似文献   

7.
Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945–2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.  相似文献   

8.
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.  相似文献   

9.
Antarctic and sub-Antarctic benthic invertebrates are subjected to intense predation by mobile macroinvertebrates. Accordingly, chemical protection as well as other defensive mechanisms are expected to be common in organisms inhabiting these ecosystems. In order to evaluate anti-predation activities and allocation of chemical defenses within the anatomy of marine benthic Antarctic and sub-Antarctic invertebrates, 55 species were tested for feeding repellence against the sea star Odontaster validus, a common eurybathic sympatric predator. The invertebrates tested were collected from the deep waters of two poorly surveyed areas in terms of chemical ecology studies: the eastern Weddell Sea (Antarctica) and the vicinities of Bouvet Island (sub-Antarctica). Experiments were conducted at the Spanish Antarctic Base in Deception Island. In the feeding deterrence experiments, shrimp pieces were treated with crude lipophilic fractions obtained from each species, and were offered to the sea stars. A total of 29 species (53 %) from 7 different phyla (Porifera, Cnidaria, Chordata, Bryozoa, Echinodermata, Mollusca, and Annelida) showed feeding repellence against O. validus, and are therefore chemically protected against this keystone predator. Furthermore, 25 species were dissected into parts to investigate the possible allocation of defensive compounds. Some of the results obtained from these analyses support the prediction that the most exposed/vulnerable tissues concentrate chemical defenses to avoid predation against the sea stars. In summary, the results obtained in our survey support the hypothesis that deep-water Antarctic and sub-Antarctic benthic invertebrates are well protected chemically against sympatric predators, similarly to what has been reported in previous studies investigating shallow-water Antarctic species.  相似文献   

10.
Ecological theory predicts the strongest ecosystem effects of herbivory when dominant and ecologically important species are consumed. Bilberry, Vaccinium myrtillus, is such a key plant species, attractive to many other species in the boreal forests, for example ungulate and invertebrate herbivores. Large herbivores may remove substantial biomass and alter plant quality and therefore affect abundance and populations of invertebrate animals sharing the same food plant. We combined experimental exclusion of ungulates with a browsing intensity gradient to investigate the 15-year effect of ungulate (Cervus elaphus and Ovis aries) browsing on bilberry plant size and on bilberry-feeding herbivorous larvae (Lepidoptera and Symphyta), in a Norwegian old growth boreal forest ecosystem. Bilberry ramets in exclosure plots had nearly nine times higher dry mass and three times higher abundance of invertebrates feeding on them than in ungulate-access plots. Sweep-netting data verified these findings as larval numbers were twice as high in exclosure plots. The pattern in the large herbivore effects on bilberry size and abundance of herbivorous larvae were identical along the browsing gradient. Differences in larval abundance between treatments, as indicated by leaf-chewing, increased during the 15-year study period, and the community fluctuations were larger when ungulate herbivores were excluded. The browsing effect was moderated by plant quality as larval densities were lowest on both heavily-browsed and non-browsed plants, and highest on ramets that had 50–74% of annual shoots browsed. Our study supports previous findings in that bilberry is relatively disturbance tolerant and may recover quickly, but that ungulates may compete with herbivorous larvae for food biomass. Additionally, our results strongly indicates that population insect community peaks and fluctuations are dampened by ungulate consumption. Our findings add to the understanding on how ungulates may structure forest ecosystems directly and indirectly.  相似文献   

11.
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983–1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95–99 % throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983–2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983–1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.  相似文献   

12.
Fouling-resistant surfaces of tropical sea stars   总被引:1,自引:0,他引:1  
Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.  相似文献   

13.
Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (FST = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.  相似文献   

14.
As recently as a decade ago, Karenia brevis red tides and their effects on animal resources in the Gulf of Mexico were principally perceived as acute blooms that caused massive fish kills. Although occasional mortalities of higher vertebrates were documented, it has only been in the past decade that conclusive evidence has unequivocally demonstrated that red tides and their brevetoxins are lethal to these organisms. Brevetoxins can be transferred through the food chain and are accumulated in or transferred by biota at many trophic levels. The trophic transfer of brevetoxins in the food web is a complex phenomenon, one that is far more complicated than originally conceived. Unexplained fish kills and other animal mortalities in areas where red tide is endemic are being increasingly linked with post-bloom exposures of biota to brevetoxins. Mass mortality events of endangered Florida manatees (Trichechus manatus latirostris) follow a consistent spatial and temporal pattern, occurring primarily in the spring in southwestern Florida. Persistent blooms can also cause a cascade of environmental changes, affecting the ecosystem and causing widespread die-offs of benthic communities. Ongoing fish kills from sustained blooms can lead to short-term declines in local populations. Although animal populations in areas where red tide is endemic are unquestionably at risk, it remains to be determined to what extent populations can continue to recover from these sustained effects.  相似文献   

15.
The host suitability to Ditylenchus destructor of seven common weed species in peanut (Arachis hypogaea) fields in South Africa was determined. Based on the number of nematodes per root unit, white goosefoot (Chenopodium album), feathertop chloris (Chloris virgata), purple nutsedge (Cyperus rotundus), jimson weed (Datura stramonium), goose grass (Eleusine indica), khaki weed (Tagetes minuta), and cocklebur (Xanthium strumarium) were poor hosts. Ditylenchus destructor survived on all weed species; population densities increased in peanut hulls and caused severe damage to seeds of peanut grown after weeds. Roots of purple nutsedge left in the soil suppressed populations of D. destructor and root and pod development in peanut grown after the weed. However, nematode populations in peanut hulls and seeds were not suppressed. Some weed species, especially purple nutsedge which is common in peanut fields, can be used to indicate the presence of D. destructor in the absence of peanut.  相似文献   

16.
Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.  相似文献   

17.
Life‐history traits, especially the mode and duration of larval development, are expected to strongly influence the population connectivity and phylogeography of marine species. Comparative analysis of sympatric, closely related species with differing life histories provides the opportunity to specifically investigate these mechanisms of evolution but have been equivocal in this regard. Here, we sample two sympatric sea stars across the same geographic range in temperate waters of Australia. Using a combination of mitochondrial DNA sequences, nuclear DNA sequences, and microsatellite genotypes, we show that the benthic‐developing sea star, Parvulastra exigua, has lower levels of within‐ and among‐population genetic diversity, more inferred genetic clusters, and higher levels of hierarchical and pairwise population structure than Meridiastra calcar, a species with planktonic development. While both species have populations that have diverged since the middle of the second glacial period of the Pleistocene, most P. exigua populations have origins after the last glacial maxima (LGM), whereas most M. calcar populations diverged long before the LGM. Our results indicate that phylogenetic patterns of these two species are consistent with predicted dispersal abilities; the benthic‐developing P. exigua shows a pattern of extirpation during the LGM with subsequent recolonization, whereas the planktonic‐developing M. calcar shows a pattern of persistence and isolation during the LGM with subsequent post‐Pleistocene introgression.  相似文献   

18.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

19.
Karenia mikimotoi is a worldwide bloom-forming dinoflagellate in the genus Karenia. Blooms of this alga have been observed since the 1930s and have caused mass mortalities of fish, shellfish, and other invertebrates in the coastal waters of many countries, including Japan, Norway, Ireland, and New Zealand. This species has frequently bloomed in China, causing great financial losses (more than 2 billion yuan, Fujian Province, 2012). K. mikimotoi can adapt to various light, temperature, salinity, and nutrient conditions, which together with its complex life history, strong motility, and density-dependent allelopathy, allows it to form blooms that are lethal to almost all marine organisms. However, its toxicity differs between subspecies and some target-species-specific toxicity has also been recorded. Significant gill disorder is observed in affected fish, to which the massive fish kills are attributed, rather than to the hypoxia that occurs in the fading stage of a bloom. However, although this species is haemolytic and cytotoxic, and generates reactive oxygen species, none of the isolated toxins or lipophilic extracts have toxic effects as extreme as those of the intact algal cells. The toxic effects of K. mikimotoi are strongly related to contact with intact cells. Several reasonable hypotheses of how and why this species blooms and causes mass mortalities have been proposed, but further research is required.  相似文献   

20.
Based on results of processing planktonic and benthic samples collected in 1996 and 1997, a spatial distribution of echinoderms in the bottom and of their larvae in the plankton were collated for the water area of the Southern region of the Far Eastern State Biosphere Marine Reserve. Some correlation between distributions of the adult and larval sea star Asterias amurensis in July was revealed. At the same time, there was no correlation between distributions of larvae and adult individuals of the brittle star Ophiura sarsi and sea urchin Echinocardium cordatum, which are most abundant in the area. The size structure of bottom populations of the brittle stars O. sarsi and Amphiodia fissa in the studied area was assessed. The correlation coefficient between the distribution of young-of-the-year and the population density was 0.47 in O. sarsi and 0.74 in A. fissa respectively, which implied a selective settling of larvae of those species in areas inhabited by adult brittle stars. Recruitment of bottom populations from 1996 spawning was 5% in O. sarsi and 3.3% in A. fissa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号