首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second) could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs). This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.  相似文献   

2.
3.
4.
5.
6.
The sparse representation-based classification (SRC) has been proven to be a robust face recognition method. However, its computational complexity is very high due to solving a complex -minimization problem. To improve the calculation efficiency, we propose a novel face recognition method, called sparse representation-based classification on k-nearest subspace (SRC-KNS). Our method first exploits the distance between the test image and the subspace of each individual class to determine the nearest subspaces and then performs SRC on the selected classes. Actually, SRC-KNS is able to reduce the scale of the sparse representation problem greatly and the computation to determine the nearest subspaces is quite simple. Therefore, SRC-KNS has a much lower computational complexity than the original SRC. In order to well recognize the occluded face images, we propose the modular SRC-KNS. For this modular method, face images are partitioned into a number of blocks first and then we propose an indicator to remove the contaminated blocks and choose the nearest subspaces. Finally, SRC is used to classify the occluded test sample in the new feature space. Compared to the approach used in the original SRC work, our modular SRC-KNS can greatly reduce the computational load. A number of face recognition experiments show that our methods have five times speed-up at least compared to the original SRC, while achieving comparable or even better recognition rates.  相似文献   

7.
8.
9.
10.
11.
The avian retino-tecto-rotundal pathway plays a central role in motion analysis and features complex connectivity. Yet, the relation between the pathway’s structural arrangement and motion computation has remained elusive. For an important type of tectal wide-field neuron, the stratum griseum centrale type I (SGC-I) neuron, we quantified its structure and found a spatially sparse but extensive sampling of the retinal projection. A computational investigation revealed that these structural properties enhance the neuron’s sensitivity to change, a behaviorally important stimulus attribute, while preserving information about the stimulus location in the SGC-I population activity. Furthermore, the SGC-I neurons project with an interdigitating topography to the nucleus rotundus, where the direction of motion is computed. We showed that, for accurate direction-of-motion estimation, the interdigitating projection of tectal wide-field neurons requires a two-stage rotundal algorithm, where the second rotundal stage estimates the direction of motion from the change in the relative stimulus position represented in the first stage  相似文献   

12.
13.
14.
Sparse representation classification (SRC) is one of the most promising classification methods for supervised learning. This method can effectively exploit discriminating information by introducing a regularization terms to the data. With the desirable property of sparisty, SRC is robust to both noise and outliers. In this study, we propose a weighted meta-sample based non-parametric sparse representation classification method for the accurate identification of tumor subtype. The proposed method includes three steps. First, we extract the weighted meta-samples for each sub class from raw data, and the rationality of the weighting strategy is proven mathematically. Second, sparse representation coefficients can be obtained by regularization of underdetermined linear equations. Thus, data dependent sparsity can be adaptively tuned. A simple characteristic function is eventually utilized to achieve classification. Asymptotic time complexity analysis is applied to our method. Compared with some state-of-the-art classifiers, the proposed method has lower time complexity and more flexibility. Experiments on eight samples of publicly available gene expression profile data show the effectiveness of the proposed method.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号