首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

3.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

4.
5.
Dihydrotetrabenazine Binding and Monoamine Uptake in Mouse Brain Regions   总被引:5,自引:3,他引:2  
The objective of the present study was to estimate extracellular pH (pHe) and intracellular pH (pHi) during near-complete forebrain ischemia in the rat, and to evaluate the relative importance of lactic acidosis and rise in tissue Pco2 (Ptco2) in causing pHe and pHi to fall. The animals, which were ventilated, normoxic, normocapnic, and normothermic, were subjected to 15 min of ischemia, either without or with 30-60 min of recirculation. Ptco2 was measured with a tissue electrode, pHe with a double-barrel liquid ion-exchanger microelectrode, changes in extracellular fluid (ECF) volume by impedance measurements, tissue CO2 content by a microdiffusion technique, and labile tissue metabolites by enzymatic fluorometric methods. Ischemia caused Ptco2 to rise to between 95 and 190 mm Hg (mean 149 mm Hg), and pHe to fall by 0.45-1.05 units (mean 0.70 units). During recovery, Ptco2 normalized within 5 min and pHe after 15-30 min. During ischemia, high-energy phosphates were depleted and tissue lactate content increased to 15 mumol X g-1. The total CO2 content (Tco2) was minimally or moderately reduced (normal, 11.9 mumol X g-1; range of ischemic values, 7.9-12.1 mumol X g-1), this range probably reflecting variable amounts of remaining blood flow. Impedance measurements demonstrated that ECF volume during ischemia was reduced to 55% of control, with gradual normalization during the first 15-30 min of recirculation. From values for Ptco2, Tco2, [HCO3-]e, and ECF volume, [HCO3-]i and pHi could be calculated. These values pertain to an idealized homogeneous intracellular compartment, and the methods used cannot detect whether different intracellular compartments diverge in their acid-base responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
During a variety of insults to the brain adenine nucleotides are released in large quantities from damaged cells, triggering multiple cellular responses to injury. Here, we evaluated changes in extracellular ATP, ADP and AMP hydrolysis at different times (0–24 hours) after unilateral cortical stab injury (CSI) in adult rats. Results demonstrated that 24 hours following CSI, ATP and ADP hydrolyzing activities were not significantly altered in injured cortex. Based on calculated V ATP/V ADP ratio it was concluded that ATP/ADP hydrolysis was primarily catalyzed by NTPDase1 enzyme form. In contrast, AMP hydrolysis, catalyzed by 5’-nucleotidase, was significantly reduced at least 4 hours following CSI. Kinetic analysis and Lineweaver-Burk transformation of the enzyme velocities obtained over the range of AMP concentrations (0.05–1.50 mM) revealed that inhibition of 5’-nucleotidase activity after CSI was of the uncompetitive type. Taken together our data suggest that injured tissue has reduced potential for extracellular metabolism of adenine nucleotides in early stages after CSI.  相似文献   

8.
It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18–65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18–65 year age range.  相似文献   

9.
The effect of the acute morphine treatment on histamine (HA) pools in the brain and the spinal cord was examined in mice. Morphine (1-50 mg/kg, s.c.) administered alone caused no significant change in the steady-state levels of HA and its major metabolite, tele-methylhistamine (t-MH), in the brain. However, depending on the doses tested, morphine significantly enhanced the pargyline (65 mg/kg, i.p.)-induced accumulation of t-MH and this effect was antagonized by naloxone. A specific inhibitor of histidine decarboxylase, alpha-fluoromethylhistidine (alpha-FMH) (50 mg/kg, i.p.), decreased the brain HA level in consequence of the almost complete depletion of the HA pool with a rapid turnover. Morphine further decreased the brain HA level in alpha-FMH-pretreated mice. Morphine administered alone significantly reduced the HA level in the spinal cord, an area where the turnover of HA is very slow. These results suggest that the acute morphine treatment increases the turnover of neuronal HA via opioid receptors, and this opiate also releases HA from a slowly turning over pool(s).  相似文献   

10.

Background and Purpose

Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have rarely been studied.

Materials and Methods

We selected 24 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into two subgroups: completely paralyzed hands (CPH) (12 patients) and partially paralyzed hands (PPH) (12 patients). Twenty-four healthy controls (HC) were also recruited. We performed functional connectivity analysis in both the ipsilesional and contralesional primary motor cortex (M1) to explore the differences in the patterns between each pair of the three diagnostic groups.

Results

Compared with the HC, the PPH group displays reduced connectivity of both the ipsilesional and contralesional M1 with bilateral prefrontal gyrus and contralesional cerebellum posterior lobe. The connectivity of both the ipsilesional and contralesional M1 with contralateral primary sensorimotor cortex was reduced in the CPH group. Additionally, the connectivity of the ipsilesional M1 with contralesional postcentral gyrus, superior parietal lobule and ipsilesional inferior parietal lobule was reduced in the CPH group compared with the PPH group. Moreover, the connectivity of these regions was positively correlated with the Fugl-Meyer Assessment scores (hand+wrist) across all stroke patients.

Conclusions

Patterns in cortical connectivity may serve as a potential biomarker for the neural substratum associated with outcomes in hand function after subcortical stroke.  相似文献   

11.
Recent evidence indicates that mechanisms involved in reward and mechanisms involved in learning interact, in that reward includes learning processes and learning includes reward processes. In spite of such interactions, reward and learning represent distinct functions. In the present study, as part of an examination of the differences in learning and reward mechanisms, it was assumed that food principally affects reward mechanisms. After a brief period of fasting, we assayed the release of three neurotransmitters and their associated metabolites in eight brain areas associated with learning and memory as a response to feeding. Using microdialysis for the assay, we found changes in the hippocampus, cortex, amygdala, and the thalamic nucleus, (considered cognitive areas), in addition to those in the nucleus accumbens and ventral tegmental area (considered reward areas). Extracellular dopamine levels increased in the nucleus accumbens, ventral tegmental area, amygdala, and thalamic nucleus, while they decreased in the hippocampus and prefrontal cortex. Dopamine metabolites increased in all areas tested (except the dorsal hippocampus); changes in norepinephrine varied with decreases in the accumbens, dorsal hippocampus, amygdala, and thalamic nucleus, and increases in the prefrontal cortex; serotonin levels decreased in all the areas tested; although its metabolite 5HIAA increased in two regions (the medial temporal cortex, and thalamic nucleus). Our assays indicate that in reward activities such as feeding, in addition to areas usually associated with reward such as the mesolimbic dopamine system, other areas associated with cognition also participate. Results also indicate that several transmitter systems play a part, with several neurotransmitters and several receptors involved in the response to food in a number of brain structures, and the changes in transmitter levels may be affected by metabolism and transport in addition to changes in release in a regionally heterogeneous manner. Food reward represents a complex pattern of changes in the brain that involve cognitive processes. Although food reward elements overlap with other reward systems sharing some neurotransmitter compounds, it significantly differs indicating a specific reward to process for food consumption. Like in other rewards, both learning and cognitive areas play a significant part in food reward. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

12.
Biochemistry (Moscow) - Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined...  相似文献   

13.
14.
Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF) are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN), that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients’ cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34) and Temporal (BA 38) cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34) and of the emotional response to the new pathologic condition (BA 38) respectively. These interpretations were further supported by changes in patients’ subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding knowledge about early, fast-changing, and complex cortical responses to pathological vestibular unbalanced processing.  相似文献   

15.
A neuropsychological study of 59 families with schizophrenia (193 subjects: 59 patients, 109 parents, and 25 sibs) was conducted using the methods of A.R. Luria. The control group included 23 healthy subjects without a familial history of schizophrenia. The analysis revealed a wide spectrum of mental disorders in schizophrenics and their relatives but not in the control group. The disorders varied from vague to distinct. The most informative for discrimination of the subject groups were interrelated integrative characteristics of the left and right subcortical, left subcortico-frontal, and left subcortico-temporal areas. The errors of discrimination between schizophrenics and control subjects (a low-risk group) and between the low-risk group and sibs (a high-risk group) ranged from 7 to 19%. The multidimensional neuropsychological indicators revealed may be used for further analysis of genetic risks of schizophrenia.  相似文献   

16.
Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy.  相似文献   

17.
The effects of the organophosphate acetylcholinesterase (AChE) inhibitor soman (31.2 micrograms/kg s.c.) on guinea-pig brain AChE, transmitter, and metabolite levels were investigated. Concentrations of acetylcholine (ACh) and choline (Ch), noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, and six putative amino acid transmitters were determined concurrently in six brain regions. The brain AChE activity was maximally inhibited by 90%. The ACh content was elevated in most brain areas by 15 min, remaining at this level throughout the study. This increase reached statistical significance in the cortex, hippocampus, and striatum. The Ch level was significantly elevated in most areas by 60-120 min. In all regions, levels of NA were reduced, and levels of DA were maintained, but those of its metabolites increased. 5-HT levels were unchanged, but those of its metabolites showed a small increase. Changes in levels of amino acids were restricted to those areas where ACh levels were significantly raised: Aspartate levels fell, whereas gamma-aminobutyric acid levels rose. These findings are consistent with an initial increase in ACh content, resulting in secondary changes in DA and 5-HT turnover and release of NA and excitatory and inhibitory amino acid transmitters. This study can be used as a basis to investigate the effect of toxic agents and their treatments on the different transmitter systems.  相似文献   

18.
Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue.  相似文献   

19.
Abstract: Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; α-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 μM noradrenaline is mediated by β-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 m M K+ or 100 μ M veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A halfmaximal activation of phosphorylase occurs at about 12 m M K+. Addition of EGTA or LaCl3, reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.  相似文献   

20.
从不同年龄(20天,30天,1年)的小白鼠全脑制得细胞质混合氨酰tRNA合成酶。用异源体系(即用酵母tRNA和小白鼠全脑氨酰tRNA合成酶)测定了氨酰tRNA合成酶分别载运~3H标记的Asp、Gly、Glu、Lys和Ala的活力。结果表明除未检出tRNA~(Glu)的合成酶活力外,对其余四种氨基酸都有明显的活力,特别是年龄20天小白鼠的氨酰tRNA合成酶对~3H-Gly具有高达35%的载运活力。对~3H-Gly、~3H-Lys和~3H-Ala的载运活力有随增龄而下降的趋势,但对~3H-Asp的载运活力则随年龄增长而增高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号