首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.  相似文献   

2.
In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.  相似文献   

3.
1. Nitrogen and carbon stable-isotope ratios (δ15N and δ13C) of body tissues, mound/nest materials and dietary substrates were determined in termite species with differing trophic habits, sampled from the Mbalmayo Forest Reserve, southern Cameroon.
2. δ15N of termite tissues was enriched gradually along a spectrum of species representing a trophic gradient from wood- to soil-feeding. Species that could be identified from their general biology and from gut content analysis as feeding on well-rotted wood or as wood/soil interface feeders showed δ15N intermediate between sound-wood-feeders and soil-feeders. It is proposed that δ15N is therefore a possible indicator of the functional position of species in the humification process. Differences in δ13C were also observed between wood-feeding and soil-feeding forms.
3. High values of δ15N in soil-feeding termites suggest that nitrogen fixation is of little importance in these species.
4. A wide range of isotope effects (the difference in isotope ratios between termites and their diet) was observed for both nitrogen (Δδ15N = –1.6 to + 8.8‰) and carbon (Δδ13C = –2.2 to + 3.0‰), which suggests a diversity of nutrient acquisition mechanisms within termites and diverse relationships between termites and their intestinal micro-organisms.  相似文献   

4.
Termites are ecosystem engineers that play an important role in the biotransformation and re‐distribution of nutrients in soil. The dry forests are endemic repositories, but at same time, they are most threatened by extensive livestock and crop farming, fires, and climate change. In Colombia, the best‐protected dry forests are located in the north. The termite fauna of dry forests are poorly known. The aim was to identify the termite species occurring in tropical dry forests of the Colombian Caribbean coast in relation to diet and precipitation, temperature, elevation, and soil properties. A total of 32 species in 1,103 occurrences were found. Termitidae accounted for 78% of the species richness with the Anoplotermes‐group, Microcerotermes, and Nasutitermes being the dominant genera. Differences in species composition and abundance were found across sites. These differences may be linked to anthropogenic disturbance and polygyny and polydomy. Strikingly, our highest elevation site (334 m) had the highest species richness much higher than the two lower elevation sites. This implies an inversion of the common elevation‐diversity gradient, also found for termites which can be explained by increasing precipitation with elevation in the dry forest. An analysis of termite species richness at the global scale confirms that termite species richness correlates positively with rainfall. Hence, rainfall seems to positively affect termite diversity. In line, the studied Colombian tropical dry forests had low diversity compared to rain forests. A decline of species‐rich soil‐feeding termites with increasing aridity may explain why the highest termite diversity occurs in humid tropical rain forests. Abstract in Spanish is available with online material.  相似文献   

5.
Fungus-growing termites are associated with genus-specific fungal symbionts, which they acquire via horizontal transmission. Selection of specific symbionts may be explained by the provisioning of specific, optimal cultivar growth substrates by termite farmers. We tested whether differences in in vitro performance of Termitomyces cultivars from nests of three termite species on various substrates are correlated with the interaction specificity of their hosts. We performed single-factor growth assays (varying carbon sources), and a two-factor geometric framework experiment (simultaneously varying carbohydrate and protein availability). Although we did not find qualitative differences between Termitomyces strains in carbon-source use, there were quantitative differences, which we analysed using principal component analysis. This showed that growth of Termitomyces on different carbon sources was correlated with termite host genus, rather than host species, while growth on different ratios and concentrations of protein and carbohydrate was correlated with termite host species. Our findings corroborate the interaction specificity between fungus-growing termites and Termitomyces cultivars and indicate that specificity between termite hosts and fungi is reflected both nutritionally and physiologically. However, it remains to be demonstrated whether those differences contribute to selection of specific fungal cultivars by termites at the onset of colony foundation.  相似文献   

6.
In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d-1 (g dry wt.)-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d-1 (g dry wt.)-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d-1 (g dry wt.)-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.  相似文献   

7.
Abstract.  1. Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution.
2. A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites.
3. Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites.
4. Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site.
5. A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest.
6. Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m.
7. The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables.  相似文献   

8.
In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.  相似文献   

9.
Summary A comparison was made of some physicochemical characteristics of epigeous termitaries (nest walls and surrounding horizons) of four species of soil-feeding termites living in tropical rainforests. Our aim was to determine whether these species affect the different compounds involved in the structural stability of soil in a similar manner.Our data support the general finding that the structural stability of soil is correlated with organic matter, cations and the relative proportion of mineral elements. Of these parameters, the content of organic matter is the most significant factor effecting the stability of termite building materials. Analysis of humic compound distribution revealed that fulvic and humic acids, owing to their electrochemical properties, are highly involved. Also, the organic matter in termitaries is more polymerized than that of humiferous control horizons, leading to FA/HA ratios close to 1.The stability of nest walls and topsoils differs between the species. Generally, the speciesNoditermes lamanianus, Thoracotermes macrothorax andCubitermes fungifaber build nests that are enriched with organic matter and exchangeable cations, resulting in high structural stability. In contrast, materials worked byCrenetermes albotarsalis are not enriched with organic matter or cations and do not differ in stability from the control soils.It is concluded that any generalization on the overall influence of soil-feeding termites on soil fertility might be misleading. Only species which enrich their materials with organic matter, especially stabilised humic acids, contribute to soil conservation and hence fertility. Once the termitary is dead, its organic matter is again available to the soil ecosystem.  相似文献   

10.
Abstract Isolates of the genus Streptomyces were readily obtained from the intestines of two African species of soil-feeding termites by an aerobic explant technique using starch casein medium, and from their parent soil and mound materials by dilution plating. Discriminant analysis of the isolates, based on 44 representative characters, showed that the population derived directly from the termites was significantly different from that of the feed soil or the mound. The termite gut was considered to be a good source of unusual actinomycetes, but strains isolated under aerobic conditions are likely to be allochthons selected by the intestinal environment, which is highly alkaline and anaerobic. An anaerobic, filamentous isolate was obtained which may be a component of the prokaryotic symbiont population mediating termite digestion.  相似文献   

11.
A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.  相似文献   

12.
Eavesdropping has evolved in many predator–prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate‐borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants‐walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator–prey relationships.  相似文献   

13.
1. Physically complex substrates impart significant costs on cursorial central‐place foragers in terms of time spent outside the nest and total distance travelled. Ants foraging in trees navigate varied surfaces to access patchy resources, thus providing an appropriate model system for examining interactions between foraging efficiency and substrates. 2. We expected that the speed of recruitment, body size distribution and species richness of foraging arboreal ants would differ predictably among common substrate types occurring on tropical tree trunks. We measured changes in ant abundance and species composition over time at baits placed on bare tree bark, moss‐covered bark, and vine‐like vegetation appressed to bark. We also measured average body size and body size frequency on the three substrate types. Ants discovered baits sooner and accumulated at baits relatively faster when using vine substrates as the primary foraging trail. Average body size was smaller on vine substrates than on bark. Experimental removal of vine and moss substrates nullified these differences. Contrary to our predictions, species richness and body size distributions did not differ among the three substrate types, due in part to the frequent presence of a few common ground‐nesting species at baits on bare bark. 3. Our results collectively indicate that linear substrates facilitate access of foraging ants to patchy resources. Ant use of vine‐like substrates appears to be opportunistic; vine use is not confined to certain species nor constrained by body size.  相似文献   

14.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

15.
The rehabilitation of vegetation on structurally crusted soils by triggering termite activity through mulch was studied on three soil types in northern Burkina Faso, West Africa. A split-plot design was used in a fenced environment for the experiment. Insecticide (Dieldrin) was used at a rate of 500 g a.i. (active ingredient)/ha to create nontermite and termite plots. Three mulch types consisting of straw (Pennisetum pedicellatum), woody material (Pterocarpus lucens), and a composite mulch (straw and woody material) applied at a rate of 3, 6, and 4 tons/ha, respectively, were used to trigger termite activity. The grasses and woody species on the plots were surveyed. Nontermite plots responded weakly to mulch treatments, but even in the first year vegetation established on termite + mulch plots. Termite activity resulted in the increase of plant cover, plant species number, phytomass production, and rainfall use efficiency. Infiltrated water use efficiency and plant diversity were not statistically different among treatments during the first 2 years but were in the third. Woody species established only on termite plots. The three types of mulch plots showed greater vegetation development than bare plots, which remained bare throughout the experiment. Analysis of the termite and mulch interaction indicated that mulch plots without termites did not perform better than bare plots, especially in the case of woody plant regeneration. Vegetation rehabilitation was best with composite and straw mulches with termites, followed by woody mulch with termites; it was worst on bare plots.  相似文献   

16.
Termites are an important group of terrestrial insects that harbor an abundant gut microbiota, many of which contribute to digestion, termite nutrition and gas (CH(4), CO(2) and H(2)) emission. With 2200 described species, termites also provide a good model to study relationships between host diet and gut microbial community structure and function. We examined the relationship between diet and gut prokaryotic community profiles in 24 taxonomically and nutritionally diverse species of termites by using nucleic acid probes targeting 16S-like ribosomal RNAs. The relative abundance of domain-specific 16S-like rRNAs recovered from gut extracts varied considerably (ranges: Archaea (0-3%); Bacteria (15-118%)). Although Bacteria were always detectable and the most abundant, differences in domain-level profiles were correlated with termite diet, as evidenced by higher relative abundances of Archaea in guts of soil-feeding termites, compared to those of wood-feeding species in the same family. The oligonucleotide probes also readily distinguished gut communities of wood-feeding taxa in the family Termitidae (higher termites) from those of other wood-feeding termite families (lower termites). The relative abundances of 16S-like archaeal rRNA in guts were positively correlated with rates of methane emission by live termites, and were consistent with previous work linking high relative rates of methanogenesis with the soil (humus)-feeding habit. Probes for methanogenic Archaea detected members of only two families (Methanobacteriaceae and Methanosarcinaceae) in termite guts, and these typically accounted for 60% of the all archaeal probe signal. In four species of termites, Methanosarcinaceae were dominant, a novel observation for animal gut microbial communities, but no clear relationship was apparent between methanogen family profiles and termite diet or taxonomy.  相似文献   

17.
Soil-feeding termites are abundant and play important roles in the biogeochemical processes in tropical soils. Previous studies indicated that they preferentially utilize the peptidic components of soil organic matter as a nutrient resource. Here, we determined the corresponding mineralization fluxes and elucidated other N transformation processes that occur during soil gut passage using 15N tracer techniques. Termite-based rates of N mineralization by Cubitermes umbratus and Cubitermes ugandensis in soil microcosms amended with 15NH4 + were 6.6 and 9.2 nmol N day?1 (g fresh wt)?1, which means that the soil peptides fuel about 20 and 40% of the respiratory activity of these insects. Considering the areal biomass of soil-feeding termites in humid savannahs, soil-feeding termites should mineralize about 3% of the total N in their food soil per year. In addition to producing ammonia from ingested 15NO3 ? at approximately 10% of the mineralization rate, C. umbratus also formed N2 at similar rates. The formation of labelled N2 in microcosms amended with 15NH4 + seems to be at least partially due to nitrification activity in the soil; evidence for the formation of nitrate in the posterior hindgut remains inconclusive. However, the so far unexplained increase of 15N abundance in the ammonia pools of the posterior hindgut compartments manifests additional hitherto unknown metabolic processes in this gut region. Collectively, our results not only reinforce the concept of nitrogenous soil components as an important dietary resource for soil-feeding termites, but also allow us to predict that N mineralization and nitrate ammonification activities in the termite gut should positively affect the dynamics of N in tropical soil.  相似文献   

18.
Through their role as ‘ecosystem engineers’, termites provide a range of ecosystem services including decomposition, and carbon and nitrogen cycling. Although termite diversity levels differ between regions as a result of variation in regional species pool size, in general, termite diversity is thought to decline with elevation. This study (1) investigated how termite species density, abundance, functional group diversity and termite attack on dead wood vary with altitude along an Amazon–Andes altitudinal gradient in Peru; (2) identified likely environmental causes of this pattern; and (3) explored the implications of termite presence for ecosystem functioning (notably for decomposition). Termites were sampled with a standardized 100 × 2 m straight‐belt transect at five undisturbed forest sites along a gradient 190 to 3025 m, as were environmental variables and termite and fungus attack on dead wood. Termite diversity was similar to that found at comparable sites in South America, and there was little turnover of assemblage composition with elevation suggesting that montane specialists are not present. Termite diversity declined with increased elevation, though the upper distribution limit for termites was at a lower elevation than anticipated. We suggest that key drivers of this elevation pattern are reduced temperature with altitude and mid‐elevation peaks in soil water content. Also, attack on dead wood diminished with decreasing termite indirect absolute abundance, while the depth of the soil humic layer increased. We hypothesize that termite abundance is a major accelerant of decomposition rates (and associated mineralization) in Amazonian forests.  相似文献   

19.
In savannah ecosystems, termites drive key ecosystem processes, such as primary production through creation of patchiness in soil nutrients availability around their nests. In this study, we evaluated the role of termites in altering the soil seed bank size, an important ecosystem component that has often been overlooked in previous work. Data on above ground vegetation and soil seed bank samples were collected from four microhabitats, that is, the wooded mound, unwooded mound, tree sub‐canopy and the open grassland matrix in a protected game reserve in south‐central Zimbabwe. The seedling emergence method was then used to identify species present in the soil samples. One‐way analysis of variance followed by Tukey's multiple comparison tests was executed to test for significant differences in plant species richness among the four microhabitats. The results indicate that plant species richness was high on wooded termite mound but did not differ between the unwooded and the sub‐canopy microhabitats. The open grassland microhabitat had the lowest plant species richness. The influence of termites on the soil seed bank composition was also life form specific. The herb and woody life forms had significantly (α = 0.05) higher species richness in the soil seed bank at wooded and unwooded termite mounds when compared to the other two microhabitats. Overall, these results imply that termites alter the soil seed bank and the findings enhance our understanding of the significant role termites play in regulating processes in savannah ecosystem.  相似文献   

20.
1. The growth pattern of Namibian fairy circles was examined in relation to environmental, termite, and plant variables to provide support for the sand termite (Psammotermes allocerus Silvestri) hypothesis of circle origin. 2. New and young circles were associated with the highest number of sand termites and their foraging grass sheetings which were both considerably lower in mature and senescent circles. 3. Circles increased in size with age, and apart from the senescent stage had higher soil moisture levels than the matrix. 4. In laboratory trials sand termites browsed seedling roots, negatively impacting root and leaf number. 5. This provides a potential mechanism for circle formation through central‐based foraging by P. allocerus which eliminates Stipagrostis grass clumps around its nest system. 6. The resulting bare disc is postulated to be maintained through a combination of a depleted seed bank, termite herbivory on seedlings, and excavations by pugnacious ants (Anoplolepis steingroeveri Forel).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号