首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The product of the gene mutated in Bloom's syndrome, BLM, is a 3′–5′ DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg2+, is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.  相似文献   

2.
We have reported on the differences in site-specific cleavage between DNA and DNA-RNA hybrids by various prototypic DNA cleavers (accompanying paper). In the case of bleomycin (BLM), degradation at 5'-GC-3'sites was suppressed relative to the same sequence in double-stranded DNA, while 5'-GT-3' damage remained constant. We now present results of our further investigation on the chemical and conformational factors that contribute to BLM-mediated DNA strand cleavage of DNA-RNA hybrids. Substitution of guanine by hypoxanthine on the RNA strand of hybrids resulted in a significant enhancement of 5'-GC-3' site damage on the DNA strand relative to double-stranded DNA, thus reversing the suppression noted at these sites. Additionally, 5'-AT-3' sites, which are damaged significantly more in the hybrid than in DNA, exhibit decreased product formation when hypoxanthine is present on the RNA strand of hybrids. However, when hypoxanthine is substituted for guanine on the DNA strand (a GC cleavage site becomes IC), 5'-IT-3' and 5'-IC-3' site cleavage is almost completely suppressed, whereas AT site cleavage is dramatically enhanced. The priority in metallobleomycin site-specific cleavage of hybrids changes with hypoxanthine substitution: the cleavage priority is AT > GT > GC in native hybrid; GC > GT > AT in hybrids substituted with hypoxanthine in the RNA strand; AT >> GT approximately GC in hybrids substituted with hypoxanthine in the DNA strand. The results of kinetic isotope effect studies on BLM cleavage are presented and, in most cases, the values are larger for the hypoxanthine-substituted hybrid. The results suggest that the 2-amino groups of guanine residues on both strands of the nucleic acid play an important role in modulation of the binding and cleavage specificity of BLM.  相似文献   

3.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hoehn ST  Junker HD  Bunt RC  Turner CJ  Stubbe J 《Biochemistry》2001,40(20):5894-5905
Bleomycin (BLM) is an antitumor antibiotic that is used clinically. Its major cause of cytotoxicity is thought to be related to BLM's ability to cause double-strand (ds) DNA cleavage. A single molecule of BLM appears to cleave both strands of DNA in the presence of its required cofactors Fe(2+) and oxygen without dissociating from the helix. A mechanism for this process has been proposed based on a model structure of the hydroperoxide of Co(III)-BLM (CoBLM) bound sequence-specifically to an intact duplex containing a GTAC site, a hot spot for ds cleavage [Vanderwall, D. E., Lui, S. M., Wu, W., Turner, C. J., Kozarich, J. W., and Stubbe, J. (1997) Chem. Biol. 4, 373-387]. In this paper, we present a structural model for the second cleavage event. Two-dimensional NMR spectroscopy and molecular modeling were carried out to study CoBLM bound to d(CCAAAGXACTGGG).d(CCCAGTACTTTGG), where X represents a 3'-phosphoglycolate lesion next to a 5'-phosphate. Assignments of 729 NOEs, including 51 between the drug and the DNA and 126 within the BLM molecule, have been made. These NOEs in addition to 96 dihedral angle constraints have been used to obtain a well-defined structural model for this complex. The model reveals that the bithiazole tail is partially intercalated between the T19 and the A20 of the duplex and that the metal binding domain is poised for abstraction of the T19 H4' in the minor groove. The modeling further reveals that the predominant conformation of the bithiazole protons is trans. Two cis conformations of these protons are also observed, and ROESY experiments provide evidence for interconversion of all of these forms. The relationship of these observations to the model for ds cleavage is presented.  相似文献   

5.
EndoTT encoded by tte0829 of Thermoanaerobacter tengcongensis binds and cleaves single-stranded (ss) and damaged double-stranded (ds) DNA in vitro as well as binding dsDNA. In the presence of a low concentration of NaCl, EndoTT cleaved ss regions of damaged dsDNA efficiently but did not cleave DNA that was entirely ss or ds. At high concentrations of NaCl or MgCl2 or ATP, there was also specific cleavage of ssDNA. This suggested a preference for ss/ds junctions to stimulate cleavage of the DNA substrates. EndoTT has six specific sites (a–f) in the oriC region (1–70 nt) of T. tengcongensis. Substitutions of nucleotides around site c prevented cleavage by EndoTT of both sites c and d, implying that the cleavage specificity may depend on both the nucleotide sequence and the secondary structure of the ssDNA. A C-terminal sub-fragment of EndoTT (residues 107–216) had both endonucleolytic and DNA-binding activity, whereas an N-terminal sub-fragment (residues 1–110) displayed only ssDNA-binding activity. Site-directed mutations showed that G170, R172 and G177 are required for the endonuclease activity of EndoTT, but not for DNA-binding, whereas D171, R178 and G189 are partially required for the DNA-binding activity.  相似文献   

6.
The 5′-3′ resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5′-3′ DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.  相似文献   

7.
Bleomycin B(2)(BLM) in the presence of iron [Fe(II)] and O(2)catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe-BLM was incorporated into each analyte. One of these core sequences, GTAC, is a known hot-spot for ds cleavage, while the other sequence, GGCC, is a hot-spot for ss cleavage. Incubation of each oligo-nucleotide under anaerobic conditions with Fe(II)-BLM allowed detection of the non-covalent ternary Fe-BLM/oligonucleotide complex in the gas phase. Cleavage studies were then performed utilizing O(2)-activated Fe(II)-BLM. No work-up or separation steps were required and direct MS and MS/MS analyses of the crude reaction mixtures confirmed sequence-specific Fe-BLM-induced cleavage. Comparison of the cleavage patterns for both oligonucleotides revealed sequence-dependent preferences for ss and ds cleavages in accordance with previously established gel electrophoresis analysis of hairpin oligonucleotides. This novel methodology allowed direct, rapid and accurate determination of cleavage profiles of model duplex oligonucleotides after exposure to activated Fe-BLM.  相似文献   

8.
The detection of double-stranded (ds) DNA by SYBR Green I (SG) is important in many molecular biology methods including gel electrophoresis, dsDNA quantification in solution and real-time PCR. Biophysical studies at defined dye/base pair ratios (dbprs) were used to determine the structure–property relationships that affect methods applying SG. These studies revealed the occurrence of intercalation, followed by surface binding at dbprs above ~0.15. Only the latter led to a significant increase in fluorescence. Studies with poly(dA) · poly(dT) and poly(dG) · poly(dC) homopolymers showed sequence-specific binding of SG. Also, salts had a marked impact on SG fluorescence. We also noted binding of SG to single-stranded (ss) DNA, although SG/ssDNA fluorescence was at least ~11-fold lower than with dsDNA. To perform these studies, we determined the structure of SG by mass spectrometry and NMR analysis to be [2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]. For comparison, the structure of PicoGreen (PG) was also determined and is [2-[N-bis-(3-dimethylaminopropyl)-amino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]+. These structure–property relationships help in the design of methods that use SG, in particular dsDNA quantification in solution and real-time PCR.  相似文献   

9.
The binding of the antibiotics netropsin and distamycin A to DNA has been studied by thermal melting, CD and sedimentation analysis. Netropsin binds strongly at antibiotic/nucleotide ratios up to at least 0.05. CD spectra obtained using DNA model polymers reveal that netropsin binds tightly to poly (dA) · poly (dT), poly (dA-dT) · poly(dA-dT) and poly (dI-dC) · poly (dI-dC) but poorly, if at all, to poly (dG) · poly (dC). Binding curves obtained with calf thymus DNA reveal one netropsin-binding site per 6.0 nucleotides (Ka=2.9 · 105 M−1); corresponding values for distamycin A are one site per 6.1 nucleotides with Ka= 11.6 · 105 M−1. Binding sites apparently involve predominantly A·T-rich sequences whose specific conformation determines their high affinity for the two antibiotics. It is suggested that the binding is stabilized primarily by hydrogen bonding and electrostatic interactions probably in the narrow groove of the DNA helix, but without intercalation. Any local structural deformation of the helix does not involve unwinding greater than approximately 3° per bound antibiotic molecule.  相似文献   

10.
The adeno-associated virus (AAV) nonstructural proteins Rep68 and Rep78 are site-specific DNA binding proteins, ATP-dependent site-specific endonucleases, helicases, and ATPases. These biochemical activities are required for viral DNA replication and control of viral gene expression. In this study, we characterized the biochemical properties of the helicase and ATPase activities of homogeneously pure Rep68. The enzyme exists as a monomer in solution at the concentrations used in this study (<380 nM), as judged by its mobility in sucrose density gradients. Using a primed single-stranded (ss) circular M13 substrate, the helicase activity had an optimum pH of 7 to 7.5, an optimum temperature of 45°C, and an optimal divalent-cation concentration of 5 mM MgCl2. Several nucleoside triphosphates could serve as cofactors for Rep68 helicase activity, and the order of preference was ATP = GTP > CTP = dATP > UTP > dGTP. The Km values for ATP in both the DNA helicase reaction and the site-specific trs endonuclease reaction were essentially the same, approximately 180 μM. Both reactions were sigmoidal with respect to ATP concentration, suggesting that a dimer or higher-order multimer of Rep68 is necessary for both DNA helicase activity and terminal resolution site (trs) nicking activity. Furthermore, when the enzyme itself was titrated in the trs endonuclease and ATPase reactions, both activities were second order with respect to enzyme concentration. This suggests that a dimer of Rep68 is the active form for both the ATPase and nicking activities. In contrast, DNA helicase activity was linear with respect to enzyme concentration. When bound to ssDNA, the enzyme unwound the DNA in the 3′-to-5′ direction. DNA unwinding occurred at a rate of approximately 345 bp per min per monomeric enzyme molecule. The ATP turnover rate was approximately 30 to 50 ATP molecules per min per enzyme molecule. Surprisingly, the presence of DNA was not required for ATPase activity. We estimated that Rep translocates processively for more than 1,300 bases before dissociating from its substrate in the absence of any accessory proteins. DNA helicase activity was not significantly stimulated by substrates that have the structure of a replication fork and contain either a 5′ or 3′ tail. Rep68 binds only to ssDNA, as judged by inhibition of the DNA helicase reaction with ss or double-stranded (ds) DNA. Consistent with this observation, no helicase activity was detected on blunt-ended ds oligonucleotide substrates unless they also contained an ss 3′ tail. However, if a blunt-ended ds oligonucleotide contained the 22-bp Rep binding element sequence, Rep68 was capable of unwinding the substrate. This means that Rep68 can function both as a conventional helicase for strand displacement synthesis and as a terminal-repeat-unwinding protein which catalyzes the conversion of a duplex end to a hairpin primer. Thus, the properties of the Rep DNA helicase activity suggest that Rep is involved in all three of the key steps in AAV DNA replication: terminal resolution, reinitiation, and strand displacement.  相似文献   

11.
The role of the human RECQ5β helicase in the maintenance of genomic stability remains elusive. Here we show that RECQ5β promotes strand exchange between arms of synthetic forked DNA structures resembling a stalled replication fork in a reaction dependent on ATP hydrolysis. BLM and WRN can also promote strand exchange on these structures. However, in the presence of human replication protein A (hRPA), the action of these RecQ-type helicases is strongly biased towards unwinding of the parental duplex, an effect not seen with RECQ5β. A domain within the non-conserved portion of RECQ5β is identified as being important for its ability to unwind the lagging-strand arm and to promote strand exchange on hRPA-coated forked structures. We also show that RECQ5β associates with DNA replication factories in S phase nuclei and persists at the sites of stalled replication forks after exposure of cells to UV irradiation. Moreover, RECQ5β is found to physically interact with the polymerase processivity factor proliferating cell nuclear antigen in vitro and in vivo. Collectively, these findings suggest that RECQ5β may promote regression of stalled replication forks to facilitate the bypass of replication-blocking lesions by template-switching. Loss of such activity could explain the elevated level of mitotic crossovers observed in RECQ5β-deficient cells.  相似文献   

12.
Summary The transfer of the Agrobacterium T-DNA to plant cells involves the induction of the Ti plasmid virulence genes. This induction results in the generation of linear single-stranded (ss) copies of the T-DNA inside Agrobacterium and such molecules might be directly transferred to the plant cell. A central requirement of this ss transfer model is that the plant cell must generate a second strand and integrate the resulting double-stranded (ds) molecule into its genome. Here we report that incubating plant protoplasts with ss or ds DNA under conditions favouring DNA uptake results in transformation. The frequencies of transformation are similar and analysis of ss transformants suggests that the introduced DNA becomes double stranded and integrated. Analysis of transient expression from introduced ss DNA suggests that generation of the second strand is rapid and extrachromosomal.  相似文献   

13.
A series of novel amino acid and peptide derivatives of bleomycin (BLM) A(5) were synthesized. All the compounds possessed significant antitumor activities in vitro against HL-60, BGC-823, PC-3MIE8, and MDA-MB-435 cell lines. Their antitumor activities against MDA-MB-435 were 10-fold higher than BLM A5. The DNA cleavage studies indicated that the hydrophobic amino acid or peptide derivatives of BLM A5 could induce higher cleavage ratio of double to single strand DNA than BLM A5. From the DNA binding studies, we found that the derivatives containing either D-conformation amino acid or basic amino acid could facilitate DNA binding of BLM.  相似文献   

14.
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN–DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV–Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN–phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN–DNA)=3.01 (± 0.035)×104 M-1 and K(SFN–RNA)= 6.63 (±0.042)×103 M-1. At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure.  相似文献   

15.
BLM, a RecQ family DNA helicase mutated in Bloom''s Syndrome, participates in homologous recombination at two stages: 5′ DNA end resection and double Holliday junction dissolution. BLM exists in a complex with Topo IIIα, RMI1 and RMI2. Herein, we address the role of Topo IIIα and RMI1-RMI2 in resection using a reconstituted system with purified human proteins. We show that Topo IIIα stimulates DNA unwinding by BLM in a manner that is potentiated by RMI1-RMI2, and that the processivity of resection is reliant on the Topo IIIα–RMI1-RMI2 complex. Topo IIIα localizes to the ends of double-strand breaks, thus implicating it in the recruitment of resection factors. While the single-stranded DNA binding protein RPA plays a major role in imposing the 5′ to 3′ polarity of resection, Topo IIIα also makes a contribution in this regard. Moreover, we show that DNA2 stimulates the helicase activity of BLM. Our results thus uncover a multifaceted role of the Topo IIIα–RMI1-RMI2 ensemble and of DNA2 in the DNA resection reaction.  相似文献   

16.
Two novel coordination compounds of half-sandwiched ruthenium(II) containing 2-(5-fluorouracil)-yl-N-(pyridyl)-acetamide were synthesized, and their intercalation binding modes with calf thymus DNA were revealed by hyperchromism of ultraviolet-visible spectroscopy; the binding constants were determined according to a Langmuir adsorption equation that was deduced on the base of careful cyclic voltammetry measurements. The two compounds exhibited DNA intercalation binding activities with the binding constants of 1.13×106 M-1 and 5.35 ×105 M-1, respectively.  相似文献   

17.
Summary Electrooxidation and electroreduction of- and u.v.-irradiated DNA were studied by means of differential pulse voltammetry at the graphite electrode and differential pulse polarography at the dropping mercury electrode. Two separated voltammetric oxidation peaks G and A were used for monitoring conformational changes in guanine - cytosine (GC) and adenine - thymine (AT) pairs respectively in irradiated double-stranded (ds) DNA. Pulse-polarography reduction peak III was used for detection of denatured DNA in the irradiated samples of ds DNA. It was found that the heights of peaks G and A of ds DNA did not change with the radiation dose after relatively low doses of- and u.v.-radiations (up to ca. 40 krads and 1 × 104 Jm–2, respectively), when no single-stranded (ss) DNA was detected in the irradiated DNA samples. After higher doses of radiation the occurrence of ss DNA or ss segments in the irradiated samples of ds DNA was accompanied by an increase of peaks G and A; however, peak A grew more rapidly with the increasing dose than peak G. It was concluded that the results obtained support the assumption, according to which regions of ds DNA rich in AT pairs are more susceptible to denaturation caused by- and u.v.-radiations.This dose concerns the DNA solution at a concentration of 600 µg/ml–1  相似文献   

18.
Four different molecular dynamics (MD) simulations have been performed for ordered DNA decamers, d(5′-ATGCAGTCAG)·d(5′-TGACTGCATC). The counterions were the two natural polyamines spermidine3+ (Spd3+) and putrescine2+ (Put2+), the synthetic polyamine diaminopropane2+ (DAP2+) and Na+. The simulation set-up corresponds to an infinite array of parallel DNA mimicking the state in oriented DNA fibers or crystals. This work describes general properties of polyamine and Na+ binding to DNA. Simulated diffusion coefficients show satisfactory agreement with experimental NMR diffusion data of comparable systems. The interaction of the polyamines with DNA is dynamic in character and the cations mostly form short-lived contacts with the electronegative binding sites of DNA. Polyamines, Na+ and water interact most frequently with the charged phosphate atoms with preference for association from the minor groove side with O1P over O2P. There is a strong anti-correlation in the cation binding to the electronegative groups of DNA, i.e. the presence of a cation near one of the DNA sites repels other cations from binding to this and to the other sites separated by <7.5 Å from each other. In contrast to the other polyamines, DAP2+ is able to form ‘bridges’ connecting neighboring phosphate groups along the DNA strand. A small fraction of DAP2+ and Put2+ can be found in the major grooves, while Spd3+ is absent there. The results of the MD simulations reveal principal differences in the polyamine–DNA interactions between the natural (Spd3+, Put2+ and spermine4+) and synthetic (DAP2+) polyamines.  相似文献   

19.
通过光谱分析、粘度测定及~1HNMR研究证实:博安霉素(BleomycinA_6,BLMA_6)是通过双噻唑基嵌插入碱基对之间与DNA结合的。同时测定了BLMA_6与DNA的结合常数、结合位点数并与博莱霉素A_2(BLMA_2)、A_5(BLMA_5)进行了比较,证实了末端胺基对BLMA_6与DNA结合的贡献,琼脂糖凝胶电泳对BLMA_6及其Cu(Ⅱ)、Fe(Ⅱ)络合物断裂DNA的研究表明,在DNA断裂中某种氧自由基的存在及金属螯合部位与DNA嵌插部位之间的相互影响,对于BLMA_6及同系物对小鼠肺毒性的差异与不同尾链结构的关系进行了探讨。  相似文献   

20.
During blood coagulation, the protease factor XIa (fXIa) activates factor IX (fIX). We describe a new mechanism for this process. FIX is cleaved initially after Arg145 to form fIXα, and then after Arg180 to form the protease fIXaβ. FIXα is released from fXIa, and must rebind for cleavage after Arg180 to occur. Catalytic efficiency of cleavage after Arg180 is 7-fold greater than for cleavage after Arg145, limiting fIXα accumulation. FXIa contains four apple domains (A1–A4) and a catalytic domain. Exosite(s) on fXIa are required for fIX binding, however, there is lack of consensus on their location(s), with sites on the A2, A3, and catalytic domains described. Replacing the A3 domain with the prekallikrein A3 domain increases Km for fIX cleavage after Arg145 and Arg180 25- and ≥90-fold, respectively, and markedly decreases kcat for cleavage after Arg180. Similar results were obtained with the isolated fXIa catalytic domain, or fXIa in the absence of Ca2+. Forms of fXIa lacking the A3 domain exhibit 15-fold lower catalytic efficiency for cleavage after Arg180 than for cleavage after Arg145, resulting in fIXα accumulation. Replacing the A2 domain does not affect fIX activation. The results demonstrate that fXIa activates fIX by an exosite- and Ca2+-mediated release-rebind mechanism in which efficiency of the second cleavage is enhanced by conformational changes resulting from the first cleavage. Initial binding of fIX and fIXα requires an exosite on the fXIa A3 domain, but not the A2 or catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号