首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.  相似文献   

2.
The interaction between DNA and a benzothiazole-quinoline cyanine dye with a trimethine bridge (TO-PRO-3) results in the formation of three noncovalent complexes. Unbound TO-PRO-3 has an absorption maximum (λmax) of 632 nm, while the bound dyes (with calf thymus DNA) have electronic transitions with λmax = 514nm (complex I), 584nm (complex II) and 642 nm (complex III). The blue shifts in the electronic transitions and the bisignate shape of the circular dichroism bands indicate that TO-PRO-3 aggregates with DNA. Complex I has a high dye:base pair stoichiometry, which does not depend on base sequence or base modifications. The bound dyes exhibit strong interdye coupling, based on studies with a short oligonucleotide and on enhanced resonance scattering. From thermal dissociation studies, the complex is weakly associated with DNA. Studies with poly(dGdC)2 and poly(dIdC)2 and competitive binding with distamycin demonstrate that complex II is bound in the minor groove. This complex stabilizes the helix against dissociation. For complex III, the slightly red-shifted electronic transition and the stoichiometry are most consistent with intercalation. Using poly(dAdT)2, the complexes have the following dye mole fractions (Xdye): Xdye = 0.65 (complex I), 0.425 (complex II) and 0.34 (complex III).  相似文献   

3.
The noncovalent complexes of five cytotoxic protoberberine alkaloids, that is, berberine, palmatine, jatrorrhizine, coptisine, and berberrubine with several double-stranded oligodeoxynucleotides were systematically investigated by using electrospray ionization mass (ESI-MS) and fluorescence spectrometric methods, with the aim of establishing the structure-activity relationships. ESI-MS spectrometric studies indicated that these five alkaloids showed both 1:1 and 1:2 binding stoichiometries with d(AAGAATTCTT)(2), d(AAGGATCCTT)(2), and d(AAGCATGCTT)(2). Their relative binding affinities toward these three double-stranded DNA were semi-quantitatively evaluated by measuring the ratios of the complex signals ([ds+alkaloid-5H](4-)+[ds+2alkaloid-6H](4-)) to those of the duplexes ([ds-4H](4-)) and also by ESI-MS competitive binding experiments. These experiments established the relative binding affinities of five protoberberine alkaloids in the order of palmatine>jatrorrhizine>coptisine>berberine>berberrubine with d(AAGAATTCTT)(2), palmatinecoptisine>jatrorrhizineberberine>berberrubine with d(AAGGATCCTT)(2) and palmatine>jatrorrhizinecoptisine>berberine>berberrubine with d(AAGCATGCTT)(2). Significantly, these alkaloids except berberrubine bound to d(AAGGATCCTT)(2) and d(AAGCATGCTT)(2) with the affinities comparable to Hoechst 33258, a typical DNA minor groove binder. The relative binding preferences of berberine, palmatine, and coptisine with these three double-stranded DNA were further quantitatively assessed by their association constants obtained from fluorescence titration experiments. The values revealed the order of relative binding affinities as berberine>coptisine>palmatine with d(AAGAATTCTT)(2) and coptisine>berberine>palmatine with d(AAGGATCCTT)(2) and d(AAGCATGCTT)(2). These results were not in full agreement with those obtained from ESI-MS experiments, maybe due to the different measuring solution conditions. The results from ESI-MS and fluorescence titration experiments indicated that the sequence selectivities of these five alkaloids were not significant and remarkable AT- or GC-rich DNA binding preferences were not obtained, in contrast to the report that berberine binds preferentially to AT-rich DNA. To provide further insight into the sequence selectivities, the association constants of berberine with d(AAGATATCTT)(2), 5'-AAGTAATCTT-3'/5'-AAGATTACTT-3', d(AAGGGCCCTT)(2), d(AAGGCGCCTT)(2), and 5'-AAGGCCGCTT-3'/5'-AAGCGGCCTT-3', that is double helical DNA from AT-rich to GC-rich sequences, were further measured by fluorescence titration methods. No significant differences in their association constants were observed, suggesting that berberine showed no remarkable sequence selectivities.  相似文献   

4.
5.
6.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

7.
The present paper reports that amikhellin, a drug so far used as a coronary vasodilator, binds to double-stranded DNA by an intercalation process which does not depend upon DNA base composition. The binding to DNA was established by spectrophotometry, ultracentrifugation and competition with ethidium bromide. The parameters of the binding equilibrium were calculated by these two latter methods. Evidence for intercalation was obtained from the observation by viscosimetric experiments of the length increase of sonicated calf thymus DNA and of the untwisting of circular PM2 DNA. The unwinding angle was measured to be 6° per bound drug molecule.  相似文献   

8.
A novel coumarin‐appended PNA binding cyclen derivative ligand, C1 , and its copper(II) complex, C2 , have been synthesized and characterized. The interaction of these compounds with DNA was systematically investigated by absorption, fluorescence, and viscometric titration, and DNA‐melting and gel‐electrophoresis experiments. DNA Melting and viscometric titration experiments indicate that the binding mode of C1 is a groove binding, and C2 is a multiple binding mode that involves groove binding and electrostatic binding. From the absorption‐titration data, we can state that the primary interaction between CT DNA and the two compounds may be H‐bonds between nucleobases. Fluorescence studies indicate that the binding ability of C1 to d(A)9 is as twice or thrice as that of other oligodeoxynucleotides. Agarose gel‐electrophoresis experiments demonstrate that C2 is an excellent chemical nuclease, which can cleave plasmid DNA completely within 24 h.  相似文献   

9.
Many evidences suggest that DNA-drug interaction in the minor groove and the intercalation of drugs into DNA may play critical roles in antiviral, antimicrobial, and antitumor activities. As a continuous effort to develop novel antiviral agents, the series of planar fluorenone (3a–7d) were synthesized and used along with nonplanar biphenyls (11a–d) for the comparative analysis of their interaction with DNA. The chemical structure of new compounds was confirmed by 1H NMR, 13C NMR and mass spectra as well as elemental analysis. DNA affinity of 3a–7d and 11a–d was evaluated by ethidium bromide displacement assay. Affinity constant (lgKa) of 3a–7d was found to be approximately two orders of magnitude higher than constants of corresponding 11a–d. The molecular docking of aminoalkoxybiphenyls (11a–d) into minor grove of five different nucleotide sequences (d(CCIICICCII), d(CGCGTTAACGCG), d(CGCGATATCGCG), d(GGCCAATTGG), d(GGATATATCC)) demonstrated their binding capacity to the specific DNA site. The linear least squares fitting technique was successfully applied to derive an equation describing the relationship between lgKa and SF.  相似文献   

10.
11.
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.  相似文献   

12.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

13.
A DNA gap repair assay was used to determine the effect of mutations in the DNA damage checkpoint system on the efficiency and outcome (crossover/non-crossover) of recombinational DNA repair. In Saccharomyces cerevisiae gap repair is largely achieved by homologous recombination. As a result the plasmid either integrates into the chromosome (indicative of a crossover outcome) or remains extrachromosomal (indicative of a non-crossover outcome). Deletion mutants of the MEC1 and RAD53 checkpoint kinase genes exhibited a 5-fold decrease in gap repair efficiency, showing that 80% of the gap repair events depended on functional DNA damage checkpoints. Epistasis analysis suggests that the DNA damage checkpoints affect gap repair by modulating Rad51 protein-mediated homologous recombination. While in wild-type cells only ~25% of the gap repair events were associated with a crossover outcome, Mec1-deficient cells exhibited a >80% crossover association. Also mutations in the effector kinases Rad53, Chk1 and Dun1 were found to affect crossover association of DNA gap repair to various degrees. The data suggest that the DNA damage checkpoints are important for the optimal functioning of recombinational DNA repair with multiple terminal targets to modulate the efficiency and outcome of homologous recombination.  相似文献   

14.
The protamine thynnine is an arginine-rich protein approximately 30 amino acids long with a tyrosine in the middle of its sequence. Its fluorescence decay kinetics can be described by a biexponential function with lifetimes of 0.52 and 2.1 ns, with almost equal preexponential factors. The fluorescence quencher CsCl does not affect the short lifetime but shifts the equilibrium between the long and short lifetime toward the short one and reduces the long lifetime. In nature, thynnine is found complexed with chromosomal DNA. In vitro complexes of thynnine with double-stranded (ds) DNA are stable at physiologic ionic strength but dissociate at high NaCl concentration. This dissociation can be monitored by steady-state fluorescence. From the salt concentration dependence of the dissociation of the complex of thynnine with ds-DNA 145 bp long, it can be concluded that only 4 of 21 possible full electrostatic bonds are involved in thynnine-DNA binding. In addition, the binding constant at 1M NaCl is of the order of 106, indicating a strong nonelectrostatic component in arginine-DNA binding.  相似文献   

15.
Studies on amikhellin. I. Intercalative binding to double-stranded DNA   总被引:1,自引:0,他引:1  
M Rucheton  P Jeanteur 《Biochimie》1973,55(11):1415-1420
  相似文献   

16.
The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5?×?10(5) and 5?×?10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.  相似文献   

17.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (K(b)). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram((- ve)) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram((+ ve)) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

18.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (Kb). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram( ? ve) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram( + ve) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

19.
A method for studying the local inhomogeneities of DNA and its dynamics is proposed. The method is based on the combination of two procedures, splitting the DNA molecules by ultrasound and analysis of DNA fragments obtained by gel electrophoresis. The frequency of cleavage of internucleotide bonds was found to depend on the type of nucleotides forming the bond and on their nearest neighbors. Estimates of cleavage frequencies in each of 16 dinucleotides showed that, in the 5'-d(CpG)-3', 5'-d(CpA)-3', and 5'-d(CpT)-3' dimers, the cleavage occurs considerably more frequently than in the rest, and the frequency of cleavage depends on the nearest neighbors. It was shown that the double-helix cleavage can occur with shifts by several nucleotides. Physical prerequisites were considered that can lead to this pattern of sequence - specific cleavage.  相似文献   

20.
The copper (II) complex [Cu(Itpy)(2)](ClO(4))(2) (1), (Itpy=imidazole terpyridine) has been synthesized and structurally characterized. Crystal structure of the complex shows the complex to be a monomeric copper (II) species with two Itpy ligands coordinated to the metal ion to give a six coordinate complex. The complex has a distorted octahedral geometry with axial elongation. Variable temperature crystal structure data shows dynamic nature of the Jahn-Teller distortion. The complex is an avid DNA binder with a binding constant of 4.26+/-0.20x10(3)M(-1). Observed changes in the viscosity and circular dichroic spectrum of calf thymus DNA solution in the presence of complex 1 suggests intercalative binding of complex 1 to DNA. The complex cleaves supercoiled pBR322 DNA oxidatively in the presence of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号