首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confluent quiescent Swiss mouse 3T3 cells can be stimulated to initiate DNA synthesis and to divide by epidermal growth factor (EGF) and prostaglandin F2 alpha (PGF2 alpha), two mitogens of unrelated structure. Heat treatment at 46 degrees C for up to 20 min of confluent quiescent cells, which has no mitogenic effect, can enhance the stimulatory effect of suboptimal concentrations of EGF or PGF2 alpha on the initiation of DNA synthesis. Furthermore, insulin, which is not mitogenic in these cells, enhances the effect of these mitogens, but this effect is not further enhanced by heat treatment. Likewise the combination of EGF and PGF2 alpha is synergistic on DNA synthesis, and this effect is also not enhanced by the heat treatment. Incubation at 46 degrees C for longer than 20 min was inhibitory in all cases. These results suggest that heat treatment induces events which affect the regulation of the initiation of DNA synthesis in a manner depending on the duration of the heat treatment and the stimulation of the cells.  相似文献   

2.
A property common to many growth factors is that they must be present for several hours before the commitment to DNA synthesis and cell division occurs. The intracellular signals that are relevant during this period are poorly defined. We examined the formation of 1,2-diacylglycerol in IIC9 fibroblasts after stimulation with epidermal growth factor (EGF), and found that the mass of this lipid remained elevated for at least four hours. The concentration-dependence of EGF-stimulated 1,2-diacylglycerol production and [3H]thymidine incorporation were similar. Studies of phospholipid metabolism strongly suggested that phosphatidylcholine was the source of the 1,2-diacylglycerol generated in response to EGF. EGF did not stimulate the hydrolysis of other phospholipids, including the phosphoinositides, nor did it increase synthesis de novo of 1,2-diacylglycerol. This pattern of sustained 1,2-diacylglycerol formation from phosphatidylcholine may be important in the mitogenic signalling of EGF and potentially other growth factors.  相似文献   

3.
This is the first report to show that epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulate the production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in the thyroid gland. In cultured porcine thyroid cells, EGF and TPA stimulate PGE2 and 6-keto PGF1 alpha production; the maximum PG levels were obtained after 3-4 h incubation with EGF or TPA; the addition of as little as 10(-11) M EGF or 5 X 10(-11) M TPA resulted in increases in PGE2 and 6-keto PGF1 alpha, and the maximum levels were obtained with 10(-8)-10(-7) M EGF or TPA. This report also shows that EGF and TPA stimulate [3H] thymidine incorporation.  相似文献   

4.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

5.
Luteinizing hormone (LH) stimulates prostaglandin biosynthesis and steroidogenesis in preovulatory (PO) follicles prior to ovulation. Since the ovulatory process shares many similarities with an inflammatory reaction, mediators of the inflammatory response, such as bradykinin (BK) have been suggested to modulate the effects of LH. In the present study the effect of BK (5 microM) on: 1) prostaglandin biosynthesis (PGE2, PGF2 alpha and 6-keto-PGF1 alpha), 2) the levels of two enzymes in the cyclo-oxygenase pathway, prostaglandin endoperoxide synthase (PGS) and prostacyclin synthase (PCS), and 3) cyclic adenosine 3'5'-monophosphate (cAMP) and progesterone response of PO follicles incubated in vitro were examined. LH (0.1 microgram/ml) stimulated the accumulation of cAMP and progesterone in the medium, while BK had no effect on these parameters. BK exerted a slight stimulatory effect on PGE2, and PGF2 alpha, (p less than or equal to 0.01) but not on 6-keto-PGF1 alpha synthesis, but no changes in PGS or PCS levels could be detected. The effect of LH on prostaglandin biosynthesis was much more pronounced, with an increase of PGE2, PGF2 alpha and 6-keto-PGF1 alpha. LH also induced PGS. The combination of LH and BK did not alter these responses compared to that of LH alone. This study demonstrates that BK stimulates prostaglandin biosynthesis in PO follicles. In contrast to LH, this effect of BK does not seem to involve the adenylate cyclase system, since BK did not stimulate cAMP production. BK did not affect the levels of PGS or PCS, and the stimulatory effect of BK is suggested to involve an increase in the availability of substrate for the cyclo-oxygenase pathway.  相似文献   

6.
Insulin and oxytocin effects on phosphoinositide metabolism in adipocytes   总被引:4,自引:0,他引:4  
The effects of hormones on phosphoinositide metabolism were examined in rat adipocytes prelabeled with 32Pi or [3H]inositol. Oxytocin and vasopressin produced large decreases in labeled polyphosphoinositides and increases in phosphatidic acid and inositol phosphates, whereas insulin was without effect, although it stimulated lipogenesis from glucose. Likewise, insulin did not elevate 1,2-diacylglycerol measured chemically by high pressure liquid or thin-layer chromatography in fat cells or pads. It also did not increase the radioactivity in 1,2-diacylglycerol in ghosts prepared from fat cells previously labeled with [3H]arachidonic acid, although oxytocin and vasopressin increased this. It is therefore concluded that insulin does not stimulate the breakdown of polyphosphoinositides to yield 1,2-diacylglycerol and inositol phosphates in adipocytes and that the insulin-like actions of oxytocin must be due to other changes. Insulin induced small, but significant and equal increases (40% at 30 min) in the incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in adipocytes. The effects were not dependent upon glucose and were not evident before 15 min. Oxytocin also produced large increases in the labeling of the three phosphoinositides. Insulin stimulated the incorporation of [3H]glycerol into the three phosphoinositides and also phosphatidic acid, phosphatidylserine, and phosphatidylethanolamine by 50-100% in cells incubated without glucose. No changes in the labeling of glycerol 3-phosphate, lysophosphatidic acid, phosphatidylcholine, and triacylglycerol were detected, and there was a small increase (30%) in 1,2-diacylglycerol labeling. It is concluded that insulin increases the synthesis of phosphatidylinositol, phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylethanolamine, and phosphatidylserine in fat cells partly by stimulating a reaction(s) located between glycerol 3-phosphate and phosphatidic acid in the biosynthetic pathway.  相似文献   

7.
Regulation of the proliferation of primary rat hepatocytes by eicosanoids   总被引:5,自引:0,他引:5  
DNA synthesis in primary adult rat hepatocyte cultures was promoted by epidermal growth factor (EGF), arachidonic acid, and prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha). Growth promotion by EGF was blocked by 0.1 mM indomethacin and 1 mM aspirin, without affecting cell viability. If verapamil was present in the medium when EGF was added, the growth response was inhibited. Hepatocytes stimulated by EGF or arachidonic acid released PGE2 and PGF2 alpha into the culture medium. This was diminished if 0.1 mM indomethacin was also in the medium. The importance of autocrine regulation of hepatocyte growth by prostaglandins is discussed.  相似文献   

8.
In cultures of rat granulosa cells, luteinizing hormone-releasing hormone (LHRH) increases 32P incorporation into both phosphatidylinositol (PI) and phosphatidic acid (PA). After 20 min, the level of radioactivity was three- to four-fold (p less than 0.01) above control in the PI and PA fractions, respectively. The stimulatory effect of LHRH on 32P incorporation was limited to PI and PA. Similar to the effects of LHRH, a rapid and marked increase of 32P incorporation into both PI and PA is observed upon addition of prostaglandin F2 alpha (PGF2 alpha) (10(-5)M) to rat granulosa cells. Incorporation of radioactivity into PA was already increased (p less than 0.05) by 2 min following PGF2 alpha addition, while the increase in 32P-labeled PI became significant (p less than 0.01) by 5 min. In contrast to PGF2 alpha, the labeling of PI and PA following the addition of PGE2 (10(-5)M) was not significantly different from control levels during the entire 10 min of incubation. The sensitivity of the increased PA-PI labeling induced by LHRH and PGF2 alpha is compared in another experiment. After 20 min incubation 10(-6)M LHRH increased PI and PA labeling by six- and four-fold, respectively. Although the effect of PGF2 alpha is less than that of LHRH, 10(-5)M PGF2 alpha significantly (p less than 0.01) increased PI and PA labeling by three- and two-fold, respectively. By contrast, 10(-6)M PGE2 failed to affect 32P incorporation into the various phospholipid fractions, but a small enhancement (p less than 0.05) of PI and PA labeling was observed only at 10(-5)M PGE2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thrombin stimulates 32Pi incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bis-phosphate (PIP2), and phosphatidylinositol (PI), and initiates DNA synthesis in hamster (NIL) fibroblasts at a half-maximal concentration of 125 ng/ml. Neomycin, which binds PIP2 and PIP, inhibits both thrombin-stimulated initiation of cell proliferation and 32P pI incorporation into at concentrations above 2 mM without affecting thrombin binding, thymidine uptake, or cellular protein synthesis. At lower concentrations, neomycin inhibits thrombin-stimulated release of inositol 1,4,5-trisphosphate (IP3), by selectively binding PIP2, but does not inhibit 32P incorporation into PI or initiation of DNA synthesis. Phosphoinositide recycling and diacylglycerol release therefore appear necessary for initiation of cell proliferation by thrombin. IP3-stimulated Ca++ mobilization may not be required for thrombin mitogenesis, however, since neomycin can block IP3 release without inhibiting initiation.  相似文献   

10.
M Goin  L Jimenez de Asua 《FEBS letters》1992,297(1-2):175-178
Prostaglandin F2 alpha (PGF2 alpha), a mitogen for resting Swiss 3T3 cells, rapidly stimulates phosphorylation of an 80 kDa protein (80 K). 1-Oleoyl-2-acetylglycerol (OAG) and 12-O-tetradecanoyl phorbol-13-acetate (TPA) both protein kinase C (PKC) activators, also elicit 80 K phosphorylation. In contrast PGE1, PGE2 or PGF2 beta, which are non-mitogenic in these cells, had little or no action on this event. However PGE1 and PGE2 potentiate the PGF2 alpha proliferative effect but do not enhance its action on 80 K phosphorylation. These results suggest that PGF2 alpha mitogenic induction involves PKC signalling pathway activation while its enhancement by PGE1 or PGE2 occurs through a different mechanism(s).  相似文献   

11.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

12.
Exposure of skate erythrocytes to hypotonic medium stimulates a rapid increase in levels of 1,2-diacylglycerol. Other treatments which produce cell swelling such as replacement of a portion of medium NaCl with the permeant solutes ethylene glycol or ammonium chloride also stimulate increases in diacylglycerol. Whereas the reduction of medium osmolarity to 460 mosm (from 940) stimulated a persistent diacylglycerol increase, the increase after reduction to 660 mosm was transient, peaking at 2.5 min and then slowly declining. This decline could be prevented by preincubation with the diacylglycerol kinase inhibitor R59022. To investigate the source of the increased diacylglycerol, the rate of incorporation of [32P]PO4 into each major phospholipid was measured. Reduction of osmolarity to 660 mosm stimulated the incorporation of phosphate into phosphatidylcholine markedly, with a smaller increase observed into phosphatidylinositol. To demonstrate phosphatidylcholine hydrolysis, erythrocytes were prelabeled with [32P]PO4. Subsequent exposure to hypotonic (660 mosm) medium stimulated a decrease in radioactivity in phosphatidylcholine and a large increase in radioactivity in phosphatidic acid. When stimulated in the presence of ethanol, 32PO4-labeled phosphatidylethanol was formed, suggesting activation of phospholipase D. In addition, the initial formation of 32PO4-labeled phosphatidic acid was not sensitive to inhibition of diacylglycerol kinase, supporting the role of direct activation of phospholipase D. These results indicate that hypotonicity and the accompanying cell swelling induce cell membrane phospholipid turnover, predominantly phosphatidylcholine, and production of the protein kinase C activator, diacylglycerol, which appears to occur via activation of phospholipase D.  相似文献   

13.
S T Sawyer  S Cohen 《Biochemistry》1981,20(21):6280-6286
Epidermal growth factor (EGF) stimulates the incorporation of 32Pi and [3H]inositol into phosphatidylinositol (5-10-fold) in A-431 cells. EGF also stimulates the incorporation of 32Pi into phosphatidic acid (up to 10-fold). These effects are attributed to an acceleration of the turnover of phosphatidylinositol as a consequence of the binding of EGF to its membrane receptor. The extent of the phosphatidylinositol response to EGF parallels the extent of hormone binding. The phosphatidylinositol response to EGF appears to be dependent on an influx of calcium since (a) external calcium is required for the enhancement of phosphatidylinositol turnover, (2) the accumulation of 45Ca by A-431 cells is stimulated by EGF, (3) blockage of calcium influx with LaCl3 inhibits stimulation of phosphatidylinositol turnover, and (4) calcium influx via ionophore A23187 is sufficient to stimulate phosphatidylinositol turnover. Since the binding, internalization, and degradation of 125I-labeled EGF in A-431 cells are unaffected by the omission of calcium from the medium, external calcium and phosphatidylinositol turnover are not necessary for the internalization and degradation of the EGF-receptor complex.  相似文献   

14.
1-Monooleoylglycerol (MOG), a recently reported diacylglycerol kinase inhibitor (Bishop, W. R., Ganong, B. R., and Bell, R. M. (1986) J. Biol. Chem. 261, 6993-7000), exerts potent stimulatory effects on [3H]thymidine incorporation into DNA and glucose transport in Swiss 3T3 fibroblasts. MOG induces a rapid and sustained 2.5-fold increase in the cellular 1,2-diacylglycerol (1,2-DG) content, and phosphorylation of an acidic 80-kDa protein, a putative substrate for the protein kinase C (Ca2+/phospholipid-dependent protein kinase). The effect of MOG is additive to that of bombesin in terms of both an increase in tissue diacylglycerol content and phosphorylation of the 80-kDa proteins. In addition to these effects, MOG potently stimulates release of arachidonic acid from phospholipids. Inhibitors of cyclooxygenase and lipoxygenase have little effect, if any, on MOG-induced stimulation of glucose transport and DNA synthesis, while exogenously applied arachidonic readily stimulates both of these cellular responses. Furthermore, arachidonic acid, at its biologically active concentrations, is found to induce a rapid and sustained increase in cellular 1,2-DG content and stimulate the phosphorylation of the 80-kDa protein, although to a lesser extent than MOG. Prolonged pretreatment of the cells with phorbol 12,13-dibutyrate, which reduces the cellular protein kinase C content, markedly attenuates the effects of both MOG and arachidonic acid on glucose transport and DNA synthesis. These data indicate that MOG increases endogenous 1,2-DG content and thereby acts as a potent activator of protein kinase C, and that activation of protein kinase C is a crucial step in MOG-induced stimulation of mitogenesis and glucose transport.  相似文献   

15.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

16.
Prostaglandin F(2alpha) (PGF(2alpha)), a mitogen for Swiss 3T3 cells, triggers cyclin D1 mRNA/protein expression prior to cellular entry into the S phase, but fails to raise cdk4 or cyclin D3 levels, while 1-oleoyl-2-diacylglycerol (OAG), a protein kinase C (PKC) and tyrosine kinase (TK) activator, induces only cyclin D1 expression with no mitogenic response. In contrast, in PKC-depleted or -inhibited cells, PGF(2alpha), but not OAG, increases cyclin D1 expression with no mitogenic response. Finally, OAG, in the presence of orthovanadate (Na(3)VO(4)) or TGF(beta1), induces DNA synthesis. Thus, it appears that PGF(2alpha) triggers cyclin D1 expression via two independent signaling events that complement with TGF(beta1)-triggered events to induce DNA synthesis.  相似文献   

17.
The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.  相似文献   

18.
Prostaglandin F2 alpha (PGF 2 alpha) causes a rapid and marked increase of [32P]-orthophosphate incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) in rat luteal cells in culture. The incorporation of radioactivity is increased as early as 2 and 5 min after PGF 2 alpha addition into PA and PI, respectively, and by 10 min has reached a 2-fold stimulation over control in both lipid moieties. The labeling of other phospholipids is not affected. PGF 2 alpha exerts its stimulatory effect at an ED50 value of approximately 200 and 60 nM on PI and PA labeling, respectively. By contrast, human chorionic gonadotropin has no effect alone and does not interfere with the PGF 2 alpha-induced stimulation of PA-PI labeling. The striking similarity between the effects of PGF 2 alpha and LHRH on PA-PI labeling suggests that the two agents may exert their direct action on the corpus luteum via a common intracellular mechanism involving acidic phospholipid metabolism.  相似文献   

19.
We have hypothesized that two of the endogenously synthesized endometrial prostaglandins (PGs), prostaglandin F2 alpha (PGF2 alpha), and prostaglandin E1 (PGE1), play a regulatory role in growth control of the rabbit endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used to examine the possible role of these PGs in the mechanism of action of 17 beta-estradiol on DNA synthesis. Towards this end, binding, second messenger and DNA synthesis experiments were performed. 17 beta-estradiol stimulation resulted in a time dependent (optimal: approximately 6 h) and 17 beta-estradiol concentration dependent (optimal: approximately 10(-7) M 17 beta-estradiol in phenol red-containing medium) increase in [3H]PGF2 alpha binding. Scatchard type analysis of the binding data revealed an increase in receptor number while the receptor affinity for [3H]PGF2 alpha remained the same as in the control treated cultures. This 17 beta-estradiol stimulated increase in PGF2 alpha receptor allowed a suboptimal concentration of PGF2 alpha (10(-9) M) to increase intracellular levels of inositol polyphosphates, while by itself this concentration of PGF2 alpha caused no significant change in intracellular inositol polyphosphate levels. 17 beta-estradiol, alone among the several studied steroid hormones, could increase [3H]PGF2 alpha binding. Proliferation studies revealed that, in these primary cultures of rabbit endometrium, 17 beta-estradiol could increase DNA synthesis but not in the presence of indomethacin, unless PGF2 alpha was added to the medium at a concentration (10(-10) M) near or above what is normally accumulated in the medium by these cultures. In the absence of 17 beta-estradiol stimulation, addition of these same low concentrations of PGF2 alpha had no effect on DNA synthesis. Apparently, through its effect on the PGF2 alpha receptor, 17 beta-estradiol enhances the PGF2 alpha stimulated DNA synthesis response approximately 100 fold. The DNA synthesis induced by 17 beta-estradiol can be inhibited by PGE1, as can PGF2 alpha-induced DNA synthesis. We propose that 17 beta-estradiol may be mediating its mitogenic effect through an alteration of the prostaglandin agonist:antagonist control of proliferation in rabbit endometrial cultures. In addition we suggest that, if 17 beta-estradiol acts to increase PGF2 alpha, receptors as part of its mode of action, this may be of importance in other tissues possessing both prostaglandin and 17 beta-estradiol receptors.  相似文献   

20.
Cortisol is known as a potent inhibitor of phospholipase A2 activity in several tissues. In fibroblast monolayer cell cultures from proliferative human endometrium cortisol alone does not affect the basal PGF2 alpha or PGE2 synthesis. After stimulation of PGF2 alpha production by 10(-7) mol/l estradiol-17 beta increasing concentrations of cortisol up to 10(-5) mol/l dosedependently reduce the PGF2 alpha production. Also the progesterone (10(-4) mol/l) stimulated increase of PGF2 alpha and PGE2 synthesis is inhibited by cortisol (10(-7) mol/l).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号