首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   

2.
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible.  相似文献   

3.
Insect herbivory can strongly influence ecosystem nutrient dynamics, yet the indirect effects of herbivore‐altered litter quality on subsequent decomposition remain poorly understood. The northern tamarisk beetle Diorhabda carinulata was released across several western states as a biological control agent to reduce the extent of the invasive tree Tamarix spp. in highly‐valued riparian ecosystems; however, very little is currently known about the effects of this biocontrol effort on ecosystem nutrient cycling. In this study, we examined alterations to nutrient dynamics resulting from beetle herbivory in a Tamarix‐invaded riparian ecosystem in the Great Basin Desert in northern Nevada, USA, by measuring changes in litter quality and decomposition, as well as changes in litter quantity. Generally, herbivory resulted in improved leaf litter chemical quality, including significantly increased nitrogen (N) and phosphorus (P) concentrations and decreased carbon (C) to nitrogen (C:N), C:P, N:P, and lignin:N ratios. Beetle‐affected litter decomposed 23% faster than control litter, and released 16% more N and 60% more P during six months of decomposition, as compared to control litter. Both litter types showed a net release of N and P during decomposition. In addition, herbivory resulted in significant increases in annual rates of total aboveground litter and leaf litter production of 82% and 71%, respectively, under the Tamarix canopy. Our finding that increased rates of N and P release linked with an increased rate of mass loss during decomposition resulting from herbivore‐induced increases in litter quality provides new support to the nutrient acceleration hypothesis. Moreover, results of this study demonstrate that the introduction of the northern tamarisk beetle as biological control to a Tamarix‐invaded riparian ecosystem has lead to short‐term stimulation of nutrient cycling. Alterations to nutrient dynamics could have implications for future plant community composition, and thus the potential for restoration of Tamarix‐invaded ecosystems.  相似文献   

4.
Plant–insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the rosette gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3–34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant–insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant–insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.  相似文献   

5.
Defoliation‐induced changes in plant foliage are ubiquitous, though factors mediating induction and the extent of their influence on ecosystem processes such as leaf litter decomposition are poorly understood. Soil nitrogen (N) availability, which can be affected by insect herbivore frass (feces), influences phytochemical induction. We conducted experiments to test the hypotheses that insect frass deposition would (1) reduce phytochemical induction following herbivory and (2) increase the decomposition and nutrient release of the subsequent leaf litter. During the 2002 growing season, 80 Quercus rubra saplings were subjected to a factorial experiment with herbivore and frass manipulations. Leaf samples were collected throughout the growing season to measure the effects of frass deposition on phytochemical induction. In live foliage, herbivore damage increased tannin concentrations early, reduced foliar N concentrations throughout the growing season, and lowered lignin concentrations in the late season. Frass deposition apparently reduced leaf lignin concentrations, but otherwise did not influence leaf chemistry. Following natural senescence, litter samples from the treatment groups were decomposed in replicated litterbags for 18 months at the Coweeta Hydrologic Laboratory, NC. In the dead litter samples, initial tannin concentrations were lower in the herbivore damage group and higher in the frass addition group relative to their respective controls. Tannin and N release rates in the first nine months of decomposition were also affected by both damage and frass. However, decomposition rates did not differ among treatment groups. Thus, nutrient dynamics important for some ecosystem processes may be independent from the physical loss of litter mass. Overall, while lingering effects of damage and even frass deposition can therefore carry over and affect ecosystem processes during decomposition, their effects appear short lived relative to abiotic forces that tend to homogenize the decomposition process.  相似文献   

6.
Fonte SJ  Schowalter TD 《Oecologia》2005,146(3):423-431
The role of phytophagous insects in ecosystem nutrient cycling remains poorly understood. By altering the flow of litterfall nutrients from the canopy to the forest floor, herbivores may influence key ecosystem processes. We manipulated levels of herbivory in a lower montane tropical rainforest of Puerto Rico using the common herbivore, Lamponius portoricensis (Phasmatidea), on a prevalent understory plant, Piper glabrescens (Piperaceae), and measured the effects on nutrient input to the forest floor and on rates of litter decomposition. Four treatment levels of herbivory generated a full range of leaf area removal, from plants experiencing no herbivory to plants that were completely defoliated (>4,000 cm2 leaf area removed during the 76-day study duration). A significant (P<0.05) positive regression was found between all measures of herbivory (total leaf area removed, greenfall production, and frass-related inputs) and the concentration of NO 3 in ion exchange resin bags located in the litter layer. No significant relationship was found between any of the herbivory components and resin bag concentrations of NH 4 + or PO 4 . Rates of litter decay were significantly affected by frass-related herbivore inputs. A marginally significant negative relationship was also found between the litter mass remaining at 47 days and total leaf area removed. This study demonstrated a modest, but direct relationship between herbivory and both litter decomposition and NO 3 transfer to the forest floor. These results suggest that insect herbivores can influence forest floor nutrient dynamics and thus merit further consideration in discussions on ecosystem nutrient dynamics.  相似文献   

7.
Ecosystem processes, such as plant litter decomposition, are known to be partly genetically determined, but the magnitude of genetic variation within local populations is still poorly known. We used micropropagated field-grown saplings of 19 Betula pendula genotypes, representing genetic variation in a natural birch population, to examine (1) whether genotype can explain variation in leaf litter decomposition within a local plant population, and (2) whether genotypic variation in litter decomposition is associated with genotypic variation in other plant attributes. We found that a local B. pendula population can have substantial genotypic variation in leaf litter mass loss at the early stages of the decomposition process and that this variation can be associated with genotypic variation in herbivore resistance and leaf concentrations of soluble proteins and total nitrogen (N). Our results are among the first to show that fundamental ecosystem processes can be significantly affected by truly intraspecific genetic variation of a plant species.  相似文献   

8.
Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found that the nutrient concentration of leaf litter varied among genotypes, which translated into ~50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identity?genotype identity>genotypic diversity.  相似文献   

9.
Here we propose that herbivore-induced changes in leaf litter quality can modify aboveground litterfall dynamics differentially in evergreen and deciduous trees. Because aboveground plant litterfall is an important source of nutrients in terrestrial ecosystems, any factor that alters plant litter quality can have large "afterlife" effects on the decomposition rate of that litter and the subsequent rate of nutrient release. Two contrasting patterns emerge from the literature and are corroborated by our two experimental case studies. First, in evergreens, herbivory commonly results in premature leaf abscission, improved litter "quality" and an acceleration of litter decomposition. Second, in deciduous trees, herbivory commonly results in the induction of secondary compounds that decelerates decomposition. We argue that these broad patterns reflect predictable differential responses to herbivores that can have important consequences for terrestrial nutrient cycling and productivity and that warrant more attention in the literature.  相似文献   

10.
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.  相似文献   

11.
Herbivores can directly impact ecosystem function by altering litter quality of an ecosystem or indirectly by shifting the composition of microbial communities that mediate nutrient processes. We examined the effects of tree susceptibility and resistance to herbivory on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs and soil microclimate will feedback to the microbial community. Our study population consisted of individual piñon pine trees that were either susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and susceptible piñon pine trees from which the moth herbivores have been manually removed since 1982. Moth herbivory increased piñon litter nitrogen concentrations (16%) and decreased canopy precipitation interception (28%), both potentially significant factors influencing litter and soil microbial communities. Our research resulted in three major findings: (1) In spite of an apparent increase in litter quality, herbivory did not change litter microarthropod abundance or species richness. (2) However, susceptibility to herbivores strongly influenced bulk soil microbial communities (i.e., 52% greater abundance beneath herbivore-resistant and herbivore-removal trees than susceptible trees) and alkaline phosphatase activity (i.e., 412% increase beneath susceptible trees relative to other groups). (3) Season had a strong influence on microbial communities (i.e., microbial biomass and alkaline phosphatase activity increased after the summer rains), and their response to herbivore inputs, in this semi-arid ecosystem. Thus, during the dry season plant resistance and susceptibility to a common insect herbivore had little or no observable effects on the belowground organisms and processes we studied, but after the rains, some pronounced effects emerged.  相似文献   

12.
It is increasingly recognized that understanding the functional consequences of landscape change requires knowledge of aboveground and belowground processes and their interactions. For this reason, we provide novel information addressing insect herbivory and edge effects on litter quality and decomposition in fragmented subtropical dry forests in central Argentina. Using litter from Croton lachnostachyus (a common shrub species in the region) in a decomposition bed experiment, we evaluated whether litter quality (carbon and nitrogen content; carbon: nitrogen ratio) and decomposability (percentage of remaining dry weight) differ between litter from forest interiors or edges (origin) and with or without herbivory (damaged/undamaged leaves). We found that edge/interior origin had a strong effect on leaf litter quality (mainly on carbon content), while herbivory was associated with a smaller increase in nitrogen content. Herbivore damage increased leaf litter decomposability, but this effect was related to origin during the initial period of litter incubation. Overall, undamaged leaf litter from the forest edge showed the lowest decomposability, whereas damaged leaf litter decomposed at rates similar to those observed in litter from the forest interior. The interacting edge and herbivory effects on leaf litter quality and decomposability shown in our study are important because of the increasing dominance of forest edges in human-modified landscapes and the profound effect of leaf litter decomposition on nutrient cycling.  相似文献   

13.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

14.
Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter‐chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high‐nutrient, but not low‐nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.  相似文献   

15.
Although leaf‐cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf‐cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf‐cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf‐litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf‐cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied.  相似文献   

16.
We tested the hypothesis that selective feeding by insect herbivores in an old‐field plant community induces a shift of community structure towards less palatable plant species with lower leaf and litter tissue quality and may therefore affect nutrient cycling. Leaf palatability of 20 herbaceous plant species which are common during the early successional stages of an old‐field plant community was assayed using the generalist herbivores Deroceras reticulatum (Mollusca: Agriolomacidae) and Acheta domesticus (Ensifera: Gryllidae). Palatability was positively correlated with nitrogen content, specific leaf area and water content of leaves and negatively correlated with leaf carbon content and leaf C/N‐ratio. Specific decomposition rates were assessed in a litter bag experiment. Decomposition was positively correlated with nitrogen content of litter, specific leaf area and water content of living leaves and negatively correlated with leaf C/N‐ratio. When using phylogentically independent contrasts the correlations between palatability and decomposition versus leaf and litter traits remained significant (except for specific leaf area) and may therefore reflect functional relationships. As palatability and decomposition show similar correlations to leaf and litter traits, the correlation between leaf palatability and litter decomposition rate was also significant, and this held even in a phylogenetically controlled analysis. This correlation highlights the possible effects of invertebrate herbivory on resource dynamics. In a two‐year experiment we reduced the density of above‐ground and below‐ground insect herbivores in an early successional old‐field community in a two‐factorial design by insecticide application. The palatability ranking of plants showed no relationship with the specific change of cover abundance of plants due to the reduction of above‐ or below‐ground herbivory. Thus, changes in the dominance structure as well as potentially associated changes in the resource dynamics are not the result of differences in palatability between plant species. This highlights fundamental differences between the effects of insect herbivory on ecosystems and published results from vertebrate‐grazing systems.  相似文献   

17.
Abstract Climate affects litter decomposition directly through temperature and moisture, determining the ecosystem potential decomposition, and indirectly through its effect on plant community composition and litter quality, determining litter potential decomposition. It would be expected that both the direct and indirect effects of climate on decomposition act in the same direction along gradients of actual evapotranspiration (AET). However, studies from semiarid ecosystems challenge this idea, suggesting that the climatic conditions that favour decomposition activity, and the consequent ecosystem potential decomposition, do not necessarily lead to litter being easier to decompose. We explored the decomposition patterns of four arid to subhumid native ecosystems with different AET in central‐western Argentina and we analysed if ecosystem potential decomposition (climatic direct effect), nutrient availability and leaf litter potential decomposition (climatic indirect effect) all increased with AET. In general, the direct effect of climate (AET) on decomposition (i.e. ecosystem potential decomposition), showed a similar pattern to nutrient availability in soils (higher for xerophytic and mountain woodlands and lower for the other ecosystems), but different from the pattern of leaf litter potential decomposition. However, the range of variation in the ecosystem potential decomposition was much higher than the range of variation in litter potential decomposition, indicating that the direct effect of climate on decomposition was far stronger than the indirect effect through litter quality. Our results provide additional experimental evidence supporting the direct control of climate over decomposition, and therefore nutrient cycling. For the ecosystems considered, those with the highest AET are the ecosystems with the highest potential decomposition. But what is more interesting is that our results suggest that the indirect control of climate over decomposition through vegetation characteristics and decomposability does not follow the same trend as the direct effect of climate. This finding has important implications in the prediction of the effects of climate change on semiarid ecosystems.  相似文献   

18.
Interactions between spatially-separated aboveground and belowground biota exert important influences on the functioning of terrestrial ecosystems. Plant root exudates and litter inputs affect root-associated and decomposer sub-communities, which, in turn, regulate nutrient availability and plant growth. Ecosystem services theoretically attributed to specific functional components of aboveground or belowground biota are, therefore, influenced by indirect (plant-mediated) interactions with the wider community. Some recent studies have considered aboveground–belowground interactions in a climate change context, with implications for altered ecosystem service provision. This review is a conceptual discussion of the mechanisms by which aboveground–belowground interactions affect specific ecosystem services: control of herbivores by natural enemies, insect pollination and nutrient mineralization by soil decomposers. While some mechanisms are well-characterized, others are poorly understood. Reducing root and shoot herbivory, in addition to the direct plant benefit, indirectly promotes antagonism of the spatially-separate herbivore by its natural enemies. Soil decomposers and mycorrhizal fungi can increase shoot herbivore performance such that control by natural enemies is weakened, or initiate bottom-up trophic cascades which strengthen antagonism of shoot herbivores. Aboveground herbivory generally stimulates nutrient cycling by decomposers. Root herbivory and mycorrhizal association both appear to increase floral attractiveness to insect pollinators. Mechanisms reflect alterations to plant growth, nutritional quality and chemical defenses. Climate change has considerable potential to alter aboveground–belowground interactions, with largely unexplored implications for biological control, pollination and soil nutrient cycling.  相似文献   

19.
A frog endemic to Puerto Rico, Eleutherodactylus coqui, invaded Hawaii in the late 1980s, where it can reach densities of 50,000 individuals ha−1. Effects of this introduced insectivore on invertebrate communities and ecosystem processes, such as nutrient cycling, are largely unknown. In two study sites on the Island of Hawaii, we studied the top-down effects of E. coqui on aerial, herbivorous, and leaf litter invertebrates; herbivory, plant growth, and leaf litter decomposition rates; and leaf litter and throughfall chemistry over 6 months. We found that E. coqui reduced all invertebrate communities at one of the two study sites. Across sites, E. coqui lowered herbivory rates, increased NH4+ and P concentrations in throughfall, increased Mg, N, P, and K in decomposing leaf litter, increased new leaf production of Psidium cattleianum, and increased leaf litter decomposition rates of Metrosideros polymorpha. In summary, E. coqui effects on invertebrates differed by site, but E. coqui effects on ecosystem processes were similar across sites. Path analyses suggest that E. coqui increased the number of new P. cattleianum leaves and leaf litter decomposition rates of M. polymorpha by making nutrients more available to plants and microbes rather than through changes in the invertebrate community. Results suggest that E. coqui in Hawaii has the potential to reduce endemic invertebrates and increase nutrient cycling rates, which may confer a competitive advantage to invasive plants in an ecosystem where native species have evolved in nutrient-poor conditions.  相似文献   

20.
The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human‐induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem‐level process in forest streams. Here, we present a meta‐analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream‐reach scale. By contrast, nutrient enrichment at the litter‐bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co‐limitation of decomposition in streams. The magnitude of the nutrient‐enrichment effect on litter decomposition was higher for wood than for leaves, and for low‐quality than for high‐quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta‐analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low‐quality plant litter inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号