首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of hexammine and tris(ethylene diamine) complexes of rhodium on the conformation of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) using spectroscopic techniques and an enzyme immunoassay. Circular dichroism spectroscopic measurements showed that Rh(NH3)6(3+) provoked a B-DNA----Z-DNA----psi-DNA conformational transition in poly(dG-dC).poly(dG-dC). Using the enzyme immunoassay technique with a monoclonal anti-Z-DNA antibody, we found that the left-handedness of the polynucleotide was maintained in the psi-DNA form. In addition, we compared the efficacy of Rh(NH3)6(3+) and Rh(en)3(3+) to provoke the Z-DNA conformation in poly(dG-dC).poly(dG-dC) and poly(dG-m5dC.poly(dG-m5dC). The concentrations of Rh(NH3)6(3+) and Rh(en)3(3+) at the midpoint B-DNA----Z-DNA transition of poly(dG-dC).poly(dG-dC) were 48 +/- 2 and 238 +/- 2 microM, respectively. The psi-DNA form of poly(dG-dC).poly(dG-dC) was stabilized at 500 microM Rh(NH3)6(3+). With poly(dG-m5dC).poly(dg-m5dC), both counterions provoked the Z-DNA form at approximately 5 microM and stabilized the polynucleotide in this form up to 1000 microM concentration. These results show that trivalent complexes of Rh have a profound influence on the conformation of poly(dG-dC).poly(dG-dC) and its methylated derivative. Furthermore, the Rh complexes are capable of maintaining the Z-DNA form at concentration ranges far higher than that of other trivalent complexes. Our results also demonstrate that the efficacy of trivalent inorganic complexes to induce the B-DNA to Z-DNA transition of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) is dependent on the nature of the ligand as well as the polynucleotide modification. Differences in charge density and hydration levels of counterions or base sequence- and counterion-dependent specific interactions between DNA and metal complexes might be possible mechanisms for the observed effects.  相似文献   

2.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

3.
The conformation of synthetic or natural DNAs modified in vitro by covalent binding of N-AcO-A-Glu-P-3 was investigated by fluorescence and circular dichroism. In all cases, substitution occurs mainly on the C8 of guanine residues. In modified poly(dG-dC).poly(dG-dC) or poly(dA-dC).poly(dG-dT) in B conformation, A-Glu-P-3 residues interact strongly with the bases whereas in Z conformation these residues are largely exposed to the solvent and interact weakly with the bases. A-Glu-P-3 and N-acetyl-2-aminofluorene (AAF) residues are equally efficient to induce the B-Z transition of poly(dG-dC).poly(dG-dC) and of poly(dA-dC).poly(dG-dT). Modifications of poly(dG).poly(dC) and calf thymus DNA indicate strong interactions between A-Glu-P-3 and the bases.  相似文献   

4.
We studied the B-DNA to Z-DNA transition of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) in the presence of NaCl using an enzyme immunoassay. The polynucleotides were coated on microtiter plates at varying concentrations of NaCl and treated with a monoclonal anti-Z-DNA antibody, Z22. The plates were subsequently treated with alkaline phosphatase conjugated polyvalent mouse immunoglobulins and the enzyme substrate, p-nitrophenyl phosphate. The color development due to the enzyme-substrate reaction was quantitated using a microplate autoreader. Our results show that the antibody does not recognize the polynucleotides in the B-DNA conformation and binds strongly to the Z-DNA conformation. A smooth transition curve is obtained at intermediate concentrations of the counterions. From the transition curves, we determined the concentration of the counterions at the midpoint of B-DNA to Z-DNA transition. The midpoint concentrations for poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) are 2.3 and 0.74 M NaCl, respectively. Using the immunological method, we also examined the B-DNA to Z-DNA transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of naturally occurring polyamines. The midpoint concentrations of the polyamines are as follows: putrescine, 2.5 mM; spermidine, 34 microM; spermine, 1.8 microM. The midpoint values determined by the enzyme immunoassay are in good agreement with those determined by circular dichroism and ultraviolet absorption spectroscopic measurements. These results demonstrate that immobilization of a preexisting conformation or a mixture of conformations of DNA on a solid support followed by a titration of the DNA conformations using a monoclonal anti-DNA antibody is an excellent method to study the conformational dynamics of DNA.  相似文献   

5.
It was shown by circular dichroism that the B-Z transition of poly(dG-dC).poly(dG-dC) in high NaCl concentrations occurred more rapidly in the presence of formaldehyde and Tris. The product of formaldehyde and glycine interaction induces changes in the poly(dG-dC).poly(dG-dC) CD spectral characteristics of a 'B-like' conformation. It is supposed that the B-Z transition occurs without large-scale hydrogen bond breakage.  相似文献   

6.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The reactions of bis(platinum) complexes of general formula [(PtClm(NH3)3-m)2(NH2(CH2)nNH2)]2(2-m)+ were studied with poly(dG-dC).poly(dG-dC), poly(dG-m5dC).poly(dG-m5dC) and poly(dG).poly(dC). When m = 0 (Complexes II, n = 2,4) the complexes are saturated 4+ cations capable only of electrostatic interactions with the polynucleotide. Where m = 1 the complexes contain two monodentate platinum coordination spheres with the chloride trans to the diamine bridge (Complexes I, n = 2,4, 1,1/t,t). Complexes I give CD spectra characteristic of a 'Z-like' conformation upon reaction with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) but not poly(dG).poly(dC). The B----Z transition appears independent of interplatinum diamine chain length. As little as 1 bis(platinum) complex per 25-30 base pairs is sufficient to observe the Z-like spectrum. Covalent binding is however not a prerequisite for Z-DNA formation because the polyvalent cations II are also very effective in inducing the B----Z transition in either poly(dG-dC).poly(dG-dC) or poly (dG-m5dC).poly(dG-m5dC). In these cases, the concentrations of II required are significantly lower than analogous monomeric agents such as [Co(NH3)6]3+. The possible biological consequences of the Z-DNA induction by bis(platinum) complexes are discussed.  相似文献   

8.
The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG).poly(dC) is larger than to poly (dG-dC).poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC).poly(dG-dC), poly(dA-dC).poly(dG-dT) and poly(dA-dG).poly(dC-dT). In the competition between poly(dG-dC).poly (dG-dC) (B conformation) and poly(dG-br5dC).poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n.(GC)n sequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diamminedichloroplatinum (II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   

9.
Poly(dG-dC).poly(dG-dC) was modified by the reaction with 4-hydroxyaminoquinoline 1-oxide (4HAQO) in the presence of seryl-AMP. The conformations of 4HAQO-modified poly(dG-dC).poly(dG-dC) and of poly(dG-dC).poly(dG-dC) were studied by circular dichroism spectra under various salt concentration conditions. 4HAQO residues to guanine bases are inefficient in inducing the transition of poly(dG-dC).poly(dG-dC) from B-form to Z-form conformation. We have elicited monoclonal antibodies against 4HAQO-poly(dG-dC).poly(dG-dC). They were characterized using enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and binding to supercoiled DNA. These antibodies reacted with 4HAQO-poly(dG-dC).poly(dG-dC) specifically but not with 4HAQO-modified DNA or poly(dG).poly(dC). However, they cross-reacted with N-acetoxy-2-acetylaminofluorene-modified poly(dG-dC).poly(dG-dC) in Z-form conformation. These monoclonal antibodies may recognize a unique conformation in poly(dG-dC).poly(dG-dC) after 4HAQO modification.  相似文献   

10.
Abstract

The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG)·poly(dC) is larger than to poly (dG-dC)·poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC) ·poly(dG-dC), poly(dA-dC) ·poly(dG-dT) and poly(dA-dG)·poly(dC-dT). In the competition between poly(dG-dC) ·poly (dG-dC) (B conformation) and poly(dG-br5dC) ·poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n·(GC)nsequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized by the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-m5dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diammine- dichloroplatinum(II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   

11.
H Y Wu  M J Behe 《Nucleic acids research》1985,13(11):3931-3940
Salt induced transitions between four conformations of the methylated ribo-deoxyribo co-polymer poly (rG-m5dC).poly (rG-m5dC) have been studied using phosphorous-NMR, Raman spectroscopy, and circular dichroism. A high salt A-Z transition is observed for the polymer. However, the methylated polymer does not enter the high salt Z form more readily than the analogous unmethylated polymer, unlike the effect of methylation on the fully deoxy polymer poly (dG-dC).poly (dG-dC). The methylated polymer fails to undergo a low salt A-Z transition in 5 mM Tris buffer, unlike the unmethylated poly (rG-dC).poly (rG-dC). However, if the counterion is changed to triethanolamine buffer, an A-Z transition does take place. In 5 mM Tris buffer the phosphorous-NMR spectrum of poly (rG-m5dC).poly (rG-m5dC) shows one resonance in the absence of NaCl that splits into two closely spaced resonances as the NaCl level is increased to 30 mM. The Raman spectrum of poly (rG-m5dC).poly (rG-m5dC) shows that it is in the A conformation at intermediate salt concentrations. From this we conclude that poly (rG-m5dC).poly (rG-m5dC) is in a regular A conformation in Tris buffer at low Na+ levels, shifting to an alternating A conformation with a dinucleotide repeat at intermediate salt concentrations.  相似文献   

12.
The effect of basic oligopeptides (Lys-Ala-Ala)n (n = 1-5, 10) and (Lys-Leu-Ala)n (n = 1-4) on the B-Z transition of poly(dG-dC).poly(dG-dC) in water-methanol solutions was investigated using CD and uv spectroscopy. In the absence of peptides, the concentration of methanol at the midpoint of the B-Z transition is 64% at 25 degrees C. The transition is temperature dependent and the B conformation is preferred at higher temperatures. All peptides tested shift the midpoint of the B-Z transition to lower concentrations of methanol. For shorter peptides this effect increases with an increasing number of monomeric units, showing the importance of the number of positive charges in the peptide molecule. Al conditions of low methanol content, the trimer and tetramer of the (Lys-Leu-Ala)n series have a greater effect on the B-Z transition than the corresponding oligomers of the (Lys-Ala-Ala)n series. This indicates an important influence of the presence of hydrophobic groups in the peptide side chains on the binding. In the presence of peptides, the B-Z transition is also temperature dependent and the B conformation is preferred at higher temperatures. The addition of peptides results in an increase of the transition midpoint and of the transition width. These parameters were used for the calculation of the transition enthalpy delta HB-Z in 65% methanol, which is -1.15 +/- 0.25 kcal/base pair. Since the van't Hoff enthalpy delta HVH calculated from the temperature dependence of the B-Z transition in the absence of peptides is -130 kcal/mol, the length of the cooperative unit is about 110 base pairs. The results suggest that the mechanism of Z-DNA induction is similar but not identical with that involved in the action of metal cations in aqueous solution.  相似文献   

13.
The salt-induced B- to Z-DNA conformational transition is a cooperative- and time-dependent process. From a modified form of the logistic equation which describes an equilibrium between two states we have deduced a kinetic function to quantify the degree of the B to Z transition of a synthetic (dG-dC) ⋅ (dG-dC) polynucleotide. This function was obtained by introduction of time as a variable in the logistic function so that the equilibrium constant, K, is replaced by a new constant K s , characteristic of the type of salt used. This constant is defined as the salt concentration needed to reach the B-Z transition-midpoint in the time unit. The equation fits the data obtained by circular dichroism (CD) for changes in molecular ellipticity of poly(dG-m5dC) ⋅ poly(dG-m5dC) and poly(dG-dC) ⋅ poly(dG-dC) incubated with various concentrations of mono-, di-, and trivalent salts at a constant temperature. The derived expression may be a very useful tool for studying the kinetics of the B- to Z-DNA transition. Received: 1 December 1997 / Revised version: 16 March 1998 / Accepted: 27 March 1998  相似文献   

14.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

15.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

16.
Cis-dichlorodiammine platinum (II) has been reacted with synthetic polynucleotides either in B or in Z conformation. The binding of cis-dichlorodiammine platinum (II) stabilizes the Z conformation when reacted with poly (dG-m5dC) ·poly (dG-m5dC) in the Z conformation as shown by circular dichroism and by the antibodies to Z-DNA. On the other hand, the binding of cis-dichlorodiammine platinum (II) stabilizes a new conformation when reacted with poly(dG-dC)·poly(dG-dC) or poly (dG-m5dC)·poly(dG-m5dC) in the B conformation. The antibodies to Z-DNA bind to these platinated polynucleotides. In rabbits, the injection of platinated poly (dG-dC) poly (dG-dC) induces the synthesis of antibodies which recognize Z-DNA. In low salt conditions, the circular dichroism spectra of these platinated polynucleotides differ from those of B-DNA or Z-DNA. The characteristic31P nuclear magnetic resonance spectrum of Z-DNA is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

17.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7462-7471
The equilibrium binding of ethidium to the right-handed (B) and left-handed (Z) forms of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) was investigated by optical and phase partition techniques. Ethidium binds to the polynucleotides in a noncooperative manner under B-form conditions, in sharp contrast to highly cooperative binding under Z-form conditions. Correlation of binding isotherms with circular dichroism (CD) data indicates that the cooperative binding of ethidium under Z-form conditions is associated with a sequential conversion of the polymer from a left-handed to a right-handed conformation. Determination of bound drug concentrations by various titration techniques and the measurement of circular dichroism spectra have enabled us to calculate the number of base pairs of left-handed DNA that adopt a right-handed conformation for each bound drug; 3-4 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to the right-handed form for each bound ethidium, while approximately 25 and 7 base pairs switch conformations for each bound ethidium in complexes with poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2, respectively. The induced ellipticity at 320 nm for the ethidium-poly(dG-dC).poly(dG-dC) complex in 4.4 M NaCl indicates that the right-handed regions are nearly saturated with ethidium even though the overall level of saturation is very low. The circular dichroism data indicate that ethidium intercalates to form a right-handed-bound drug region, even at low r values where the CD spectra show that the majority of the polymer is in a left-handed conformation.  相似文献   

18.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

19.
B Hartmann  J Ramstein  M Leng 《FEBS letters》1987,225(1-2):11-15
Using a dialysis method we have measured the hydrogen exchange (HX) kinetics in poly(dG-dC).poly(dG-dC), poly(dG-m5dC).poly(dG-m5dC), poly(dG-br5dC).poly(dG-br5dC) and platinated poly(dA-br5dC).poly(dG-dT) under experimental conditions in which these polymers adopt the Z-conformation. The latter polymer has one slow exchanging proton with a half-time of about 2 h, whereas the other G-C alternating polymers display a slow class of two protons with exchange half-time of about 6 h. These exchange half-times are independent of ionic strength and of the nature of the salt for all these polymers in the Z-form. The slow proton exchange appears to be strongly correlated to the Z-conformation but rather independent of the Z-DNA sequence. The comparison of the proton exchange rates with the corresponding B in equilibrium Z transition rates is not in favour of the same rate limiting step for both processes.  相似文献   

20.
Effects of oligopeptides containing Lys residues on the conformation of poly(dG-m5dC) have been investigated by circular dichroism spectroscopy. Lys-Ala-Lys (KAK) and its longer analogs with Lys-Ala repeats are found to convert the B-form polynucleotide to the Z form very efficiently. The ability to induce the B-Z transition is characteristic of alternating Lys-Ala sequences and increases exponentially with increasing number of the repeats. The heptapeptide KAKAKAK has an ability comparable with that of spermine, one of the most effective inducers hitherto known. The present results provide the first example of the B-Z transition of poly(dG-m5dC) induced by peptide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号