首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have compared the properties of the poly(rA).oligo(dT) complex with those of the poly(rU).oligo(dA)n complex. Three main differences were found. First, poly(rA) and oligo(dT)n do not form a complex in concentrations of CsCl exceeding 2 M because the poly(rA) is insoluble in high salt. If the complex is made in low salt, it is destabilized if the CsCl concentration is raised. Complexes between poly(rU) and oligo(dA)n, on the other hand, can be formed in CsCl concentrations up to 6.6 M. Second, complexes between poly(rA) and oligo(dT)n are more rapidly destabilized with decreasing chain length than complexes between poly(rU) and oligo(dA)n. Third, the density of the complex between poly(rA) and poly(dT) in CsCl is slightly lower than that of poly(dT), whereas the density of the complex between poly(rU) and poly(dA) in CsCl is at least 300 g/cm3 higher than that of poly(dA). These results explain why denatured natural DNAs that bind poly(rU) in a CsCl gradient usually do not bind poly(rA).  相似文献   

2.
Absorbance melting curves of the double-stranded (rA) · (rU) helix, made with fractionated homopolynucleotides of matched length, have been obtained over a 15-fold range of [Na+] and 30° range of temperature. An excellent fit of the observed profiles was obtained with theoretical curves calculated on the basis of the simplest interpretation for the occurrence of particular equilibria [1–3]; the complete molecular partition function being evaluated by the power series method developed by Applequist [4–6]. The stability constant was evaluated from literature values for the calorimetric enthalpy. The loop closure exponent was best represented by 2.22 ± 0.04 for the mismatching loop mode of melting and 1.22 for the matching mode and was independent of [Na+] and temperature. Assuming the applicability of the nonintersecting random walk value of 1.9 ± 0.1, these results would suggest a slight bias toward matched loop formation during melting of homopolynucleotides that might be expected to form only mismatched loops. The value of the stacking parameter at 60°C was only ~6% higher than that at 30°C, 0.0221 (0.0184 for the matching case). Calculated melting curves indicate the occurrence of a fifth-order phase transition when the mean helix length is only ~13 base-pairs, or about one full turn of the helix.  相似文献   

3.
Lattice vibrational modes of poly(rU) and poly(rA)   总被引:1,自引:0,他引:1  
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2505-2526
A normal coordinate analysis has been performed for the polyribonucleotides poly(rU) and poly(rA). The polymers are assumed to be 11-fold infinite helical structures in the A conformation. The hydrogen atoms have been rigidly attached to the appropriate atoms in order to reduce the dimension of the problem. The potential energy is defined in terms of a valence force field initially and a model for the inclusion of nonbonded interactions has been presented. A method for factoring the secular equation for infinite helical polymers in Cartesian coordinates is presented. All of the general features of polyribonucleotide spectra have been reproduced and, in many cases, good quantitative agreement between observed and calculated frequencies is obtained. More specific assignments are offered for some of the observed lines.  相似文献   

4.
Kankia BI 《Biopolymers》2004,74(3):232-239
A combination of ultrasound velocimetry, density, and UV spectroscopy has been employed to study the hydration effects of binding of Mn(2+) and alkaline-earth cations to poly(rA) and poly(rU) single strands. The hydration effects, obtained from volume and compressibility measurements, are positive due to overlapping the hydration shells of interacting molecules and consequently releasing the water molecules to bulk state. The volume effects of the binding to poly(rA), calculated per mole of cations, range from 30.6 to 40.6 cm(3) mol(-1) and the compressibility effects range from 59.2 x 10(-4) to 73.6 x 10(-4) cm(3) mol(-1) bar(-1). The volume and compressibility effects for poly(rU) are approximately 17 cm(3) mol(-1) and approximately 50 x 10(-4) cm(3) mol(-1) bar(-1), respectively. The comparative analysis of the dehydration effects suggests that the divalent cations bind to the polynucleotides in inner-sphere manner. In the case of poly(rU) the dehydration effects correspond to two direct coordination, probably between adjacent phosphate groups. The optical study did not reveal any effects of cation on the secondary structure or aggregation of poly(rU). In the case of single-helical poly(rA) binding is more specific: dehydration effects correspond to three to five direct contacts and must involve atomic groups of adenines, and the divalent cations stabilize and aggregate the polynucleotide.  相似文献   

5.
Abstract

The viral cathepsin from Bombyx mori Nuclear Polyhedrosis Virus (BmNPV-Cath) is a broad-spectrum protease that participates in the horizontal transmission of this virus in silkworm by facilitating solubilization of the integument of infected caterpillars. When a B. mori farm is attacked by BmNPV, there are significant sericultural losses because no drugs or therapies are available. In this work, the structure of viral cathepsin BmNPV-Cath was used as a target for virtual screening simulations, aiming to identify potential molecules that could be used to treat the infection. Virtual screening of the Natural Products library from the Zinc Database selected four molecules. Theoretical calculations of ΔGbinding by the molecular mechanics Poisson–Boltzmann surface analysis (MM-PBSA) method indicated that the molecule Zinc12888007 (Bm5) would have high affinity for the enzyme. The in vivo infection models of B. mori caterpillars with BmNPV showed that treatment with a dose of 100?μg Bm5 dissolved in Pluronic-F127 0.02% was able to reduce the mortality of caterpillars in 22.6%, however, it did not impede the liquefaction of dead bodies. Our results suggest a role of BmNPV-Cath in generating a pool of amino acids necessary for viral replication and indicate a mechanism to be exploited in the search for treatments for grasserie disease of the silkworm.  相似文献   

6.
Proton exchange of poly(rA).poly(rU) and poly(rI).poly(rC) has been studied by nuclear magnetic resonance line broadening and saturation transfer from H2O. Five exchangeable peaks are observed. They are assigned to the imino, amino and 2'-OH ribose protons. The aromatic spectrum is also assigned. Contrary to previous observations, we find that the exchange of the imino proton is strongly buffer sensitive. This property is used to derive the base-pair lifetime, which is in the range of milliseconds at 27 degrees C, 100 times smaller than published values. The enthalpy for the base-opening reaction (-86 kJ/mol) and the insensitivity of the reaction to magnesium suggest that the open state involves a small number of base-pairs. The similarities in the exchange from the two duplexes indicate that the same open state is responsible for exchange of purine and pyrimidine imino protons. For the lifetime of the open state and for the base-pair dissociation constant, we obtain only lower limits. At 27 degrees C they are three microseconds and 10(-3), respectively. The analysis that yields the much larger values published previously is based on the assumption that amino protons exchange only from open base-pairs. But theory and preliminary experiments indicate that it may occur from the closed duplex. The exchange of amino protons is slower than that of the imino protons. Exchange of the 2'-OH protons from the duplexes is much slower than from single-stranded poly(rU), and it is accelerated by magnesium. This could indicate hydrogen-bonding to backbone phosphate. Discrepancies between our results and those of previous studies are discussed.  相似文献   

7.
Uno T  Aoki K  Shikimi T  Hiranuma Y  Tomisugi Y  Ishikawa Y 《Biochemistry》2002,41(43):13059-13066
The binding of the copper(II) complex of water-soluble meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to double-helical polynucleotides has been studied by optical absorption, circular dichroism (CD), and resonance Raman spectroscopic methods. The target polymers were RNA and RNA.DNA hybrids consisting of rA.rU, rI.rC, rA.dT, and rI.dC base pairs. Relative to the metal-free H(2)TMPyP [Uno, T., Hamasaki, K., Tanigawa, M., and Shimabayashi, S. (1997) Inorg. Chem. 36, 1676-1683], CuTMPyP binds to poly(rA).poly(dT) and poly(rA).poly(rU) with a greatly increased binding constant. The external self-stacking of the porphyrin on the surface of the polymers was evident from the strong conservative-type induced CD signals. The signal intensity correlated almost linearly with the number of stacking sites on the polymer except for poly(rA).poly(dT), which showed extraordinarily strong CD signals. Thus, the bound porphyrin may impose an ordered architecture on the polymer surface, the stacking being facilitated by the more planar nature of the CuTMPyP than the nonmetal counterpart. Resonance Raman spectra of the stacked CuTMPyP were indistinguishable from those of the intercalated one with positive delta(Cbeta-H) and negative delta(Cm-Py) bending shifts, and hence the stacked porphyrins are suggested to adopt a similar structure to that of intercalated ones. Porphyrin flattening by copper insertion opens a new avenue for medical applications of porphyrins, blocking biological events related to RNA and hybrids in malignant cells.  相似文献   

8.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

9.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
We employed UV light absorption and circular dichroism (CD) spectroscopic measurements to study the binding of novel water-soluble porphyrins meso-tetra-(4N-allylpyridyl)porphyrin [TAlPyP4], and its Ag containing derivative to the poly(rA)poly(rU) and poly(rI)poly(rC) RNA duplexes. Our results suggest that TAlPyP4 associate with the duplexes via intercalation, whereas the conservative CD spectra indicates that AgTAlPyP4 preferably binds via outside self-stacking mode. We used our determined binding isotherms for each ligand-RNA binding event to calculate the binding constant, Kb, and binding free energy, DeltaGb = -RTlnKb. By performing these experiments as a function of temperature, we evaluated the van't Hoff binding enthalpies, DeltaH. The binding entropies, DeltaSb, were calculated as DeltaSb = (DeltaHb - DeltaGb)/T. We interpret our data in terms of specific interactions that stabilize/destabilize each ligand-RNA complex studied in this work. Taken together, our data provide important new information about the thermodynamics of interactions of porphyrins with nucleic acids.  相似文献   

11.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

12.
The interaction of the 1,N6-etheno derivatives of poly(rA) (poly(epsilon rA] with poly(rU) has been studied by absorption and fluorescence spectroscopy. The stoichiometry of the interaction is found to be 1 epsilon A:1 rU and 1 epsilon A:2 rU as well as in the case of poly(rA)-poly(rU) interaction. The fluorescence properties, including the intensity and polarization of fluorescence, respond to the conformational transition of poly(epsilon rA)-poly(rU) complexes. The introduction of epsilon A groups into poly(rA) results in a marked decrease in the melting temperature, suggesting that epsilon A may destabilize the helical structure. The three-exponential decay law obtained with poly(epsilon rA)-poly(rU) complexes indicates the existence of at least three different stacked conformational states.  相似文献   

13.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

14.
15.
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed.  相似文献   

16.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

17.
18.
The hydrogen-deuterium exchange of AMP, uridine, poly(rA), and poly(rA) · poly(rU) was investigated by a spectral difference method using stopped-flow spectrophotometry. Proton exchange rates were measured as a function of pH, added catalysts, temperature and salt concentration. The results confirm and extend previous conclusions on the H-exchange chemistry of the bases, on the large equilibrium opening of the double helix, and on its slow opening and closing rates, but an alternative conformation for the major open state is considered. Two H-exchange rate classes are found in poly(rA) · poly(rU). The slower class represents the two exocyclic amino protons of A which exchange through a pre-equilibrium opening mechanism, therefore revealing the fraction of time the helix is open. Base-pairs are open 5% of the time at 25 °C. The faster class is assigned to the U-N-3 H proton, the rate of which is limited by helix opening. Both opening and reclosing of the duplex are slow, 2 s?1 and 40 s?1, respectively, at 25 °C. Thermodynamic parameters for the equilibrium helix opening and for the rate of opening were determined. These properties may be consistent with a simple opening involving swinging out of the U base while retaining A more or less stacked within the duplex. The results demonstrate that no faster or more populated helix-open state occurs (when structure is stable). It appears that, unlike opening—closing reactions at a helix end or a helix-coil boundary, internal base opening and closing are innately slow. One implication of this is that any chemical or biological process requiring access to sequences in the interior of a closed stable DNA duplex may be constrained to proceed only on a time scale of seconds, and not in milliseconds or microseconds.  相似文献   

19.
Phase transitions were studied of the sodium salt of poly(rA).poly(rU) induced by elevated temperature without Ni(2+) and with Ni(2+) in 0.07 M concentration in D(2)O (approximately 0.4 [Ni]/[P]). The temperature was varied from 20 degrees C to 90 degrees C. The double-stranded conformation of poly(rA).poly(rU) was observed at room temperature (20 degrees C-23 degrees C) with and without Ni(2+) ions. In the absence of Ni(2+) ions, partial double- to triple-strand transition of poly(rA).poly(rU) occurred at 58 degrees C, whereas only single- stranded molecules existed at 70 degrees C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni(2+) ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45 degrees C and 70 degrees C with maximum stability around 53 degrees C. Triple- to single-stranded transition of poly(rA).poly(rU) occurred around 72 degrees C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86 degrees C. Hysteresis took place in the presence of Ni(2+) during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

20.
An RNA-dependent DNA polymerase analogous to that of normal cells has been found in mouse myeloma cells. This enzyme, which is activated by Mn2+ ion, specifically copies the poly A strand of poly (rA): poly (dT) hybrid to synthesize dTMP homopolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号