首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased by the retrovirus with ultrasound exposure in these cells. Adjunctive ultrasound exposure was associated with enhanced retrovirus-mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid-DNA-, but also retrovirus-mediated gene transfer.  相似文献   

2.
3.
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (approximately 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.  相似文献   

4.
5.
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). In Japan, the number of HTLV-1 carriers is estimated to be 1.2 million and more than 700 cases of ATL have been diagnosed every year. Considering the poor prognosis and lack of curative therapy of ATL, it seems mandatory to establish an effective strategy for the treatment of ATL. In this study, we attempted to identify the cell surface molecules that will become suitable targets of antibodies for anti-ATL therapy. The expression levels of approximately 40,000 host genes of three human T-cell lines carrying HTLV-1 genomes were analyzed by oligonucleotide microarray and compared with the expression levels of the genes in an HTLV-1-negative T-cell line. The HTLV-1-carrying T-cell lines used for experiments had totally different expression patterns of viral genome. Among the genes evaluated, the expression levels of 108 genes were found to be enhanced more than 10-fold in all of the T-cell lines examined and 11 of the 108 genes were considered to generate the proteins expressed on the cell surface. In particular, the CD70 gene was upregulated more than 1,000-fold and the enhanced expression of the CD70 molecule was confirmed by laser flow cytometry for various HTLV-1-carrying T-cell lines and primary CD4(+) T cells isolated from acute-type ATL patients. Such expression was not observed for primary CD4(+) T cells isolated from healthy donors. Since CD70 expression is strictly restricted in normal tissues, such as highly activated T and B cells, CD70 appears to be a potential target for effective antibody therapy against ATL.  相似文献   

6.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

7.
8.
9.
Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system   总被引:73,自引:0,他引:73  
Bacteriophage T7 lysozyme, a natural inhibitor of T7 RNA polymerase, can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter. Low levels of T7 lysozyme supplied by plasmids pLysS or pLysL, which are compatible with the pET vectors for expressing genes from a T7 promoter, are sufficient to stabilize many target plasmids and yet allow high levels of target protein to be produced upon induction of T7 RNA polymerase. Higher levels of lysozyme supplied by plasmids pLysE or pLysH reduce the fully induced activity of T7 RNA polymerase such that induced cells can continue to grow and produce innocuous target proteins indefinitely. Different configurations of the expression system can maintain several different steady-state levels of target gene expression. The presence of T7 lysozyme has the further advantage of facilitating the lysis of cells in preparing extracts for purification of target gene products.  相似文献   

10.
Superinduction of the human gene encoding immune interferon.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

11.
Gene expression profiling of mouse embryonic stem cell subpopulations   总被引:3,自引:0,他引:3  
We previously demonstrated that mouse embryonic stem (ES) cells show a wide variation in the expression of platelet endothelial cell adhesion molecule 1 (PECAM1) and that the level of expression is positively correlated with the pluripotency of ES cells. We also found that PECAM1-positive ES cells could be divided into two subpopulations according to the expression of stage-specific embryonic antigen (SSEA)-1. ES cells that showed both PECAM1 and SSEA-1 predominantly differentiated into epiblast after the blastocyst stage. In the present study, we performed pairwise oligo microarray analysis to characterize gene expression profiles in PECAM1-positive and -negative subpopulations of ES cells. The microarray analysis identified 2034 genes with a more than 2-fold difference in expression levels between the PECAM1-positive and -negative cells. Of these genes, 803 were more highly expressed in PECAM1-positive cells and 1231 were more highly expressed in PECAM1-negative cells. As expected, genes known to function in ES cells, such as Pou5f1(Oct3/4)and Nanog, were found to be upregulated in PECAM1-positive cells. We also isolated 23 previously uncharacterized genes. A comparison of gene expression profiles in PECAM1-positive cells that were either positive or negative for SSEA-1 expression identified only 53 genes that showed a more than 2-fold greater difference in expression levels between these subpopulations. However, many genes that are under epigenetic regulation, such as globins, Igf2, Igf2r, andH19, showed differential expression. Our results suggest that in addition to differences in gene expression profiles, epigenetic status was altered in the three cell subpopulations.  相似文献   

12.
13.
DNA methylation is one of the essential epigenetic processes that play a role in regulating gene expression. Aberrant methylation of CpG-rich promoter regions has been associated with many forms of human cancers. The current method for determining the methylation status relies mainly on bisulfite treatment of genomic DNA, followed by methylation-specific PCR (MSP). The difficulty in acquiring a methylation profiling often is limited by the amount of genomic DNA that can be recovered from a given sample, whereas complex procedures of bisulfite treatment further compromise the effective template for PCR analysis. To circumvent these obstacles, we developed degenerated oligonucleotide primer (DOP)-PCR to enable amplification of bisulfite-modified genomic DNA at a genome-wide scale. A DOP pair was specially designed as follows: first 3' DOP, CTCGAGCTGHHHHHAACTAC, where H is a mixture of base consisting of 50% A, 25% T, and 25% C; and second 5' DOP, CTCGAGCTGDDDDDGTTTAG, where D is a mixture of base consisting of 50% T, 25% G, and 25% A. Our results showed that bisulfite-modified DNAs from a cell line, cord blood cells, or cells obtained by laser capture microdissection were amplified by up to 1000-fold using this method. Subsequent MSP analysis using these amplified DNAs on nine randomly selected cancer-related genes revealed that the methylation status of these genes remained identical to that derived from the original unamplified template.  相似文献   

14.
15.
Nonadhesive conditions cause Swiss 3T3 fibroblasts to enter a quiescent state that is reversed upon reattachment to a surface. Previously, we demonstrated that adhesion in serum-free conditions is sufficient to activate suspension-arrested cells out of Go, with the induction of the growth-associated genes, c-fos, c-myc, and actin. In this study, we have employed this system to identify programs of gene expression that respond primarily to the adhesive state of the cell, rather than the growth state. We show that cells in different adhesive states can be distinguished by their patterns of protein synthesis. Analysis of one adhesion-responsive protein led to its identification as pro-alpha 1 (I)-collagen. Pro-alpha 1 (I)-collagen synthesis and mRNA levels are decreased up to 6-fold in suspension-arrested fibroblasts, but are enhanced up to 5-fold as cells approach confluence. This suggests that the reduced expression in suspension-arrested cells is not simply a result of quiescence. In addition, reattachment of suspended cells in serum-free conditions caused a 7-fold induction of collagen mRNA levels and a greater than 20-fold rise in the rate of procollagen synthesis. The expression of c-myc was induced during adhesion in serum-free medium as well as by serum addition to suspension-arrested cells. However, alpha 1 (I)-collagen gene expression was unaffected by serum in the absence of adhesion. These results indicate that collagen gene expression is directly responsive to cell adhesion, independent of the growth state.  相似文献   

16.
New adenovirus vectors for protein production and gene transfer   总被引:9,自引:0,他引:9  
Based on two new adenovirus expression cassettes, we have constructed a series of Ad transfer vectors for the overexpression of one or two genes either in a dicistronic configuration or with separate expression cassettes. Inclusion of the green or blue fluorescent protein in the vectors accelerates the generation of adenovirus recombinants and facilitates the functional characterization of genes both in vitro and in vivo by allowing easy quantification of gene transfer and expression. With our optimized tetracycline-regulated promoter (TR5) we have generated recombinant adenoviruses expressing proteins, that are either cytotoxic or which interfere with adenovirus replication, at levels of 10–15% of total cell protein. Proteins that are not cytotoxic can be produced at levels greater than 20% of total cell protein. As well, these levels of protein production can be achieved with or without adenovirus replication. This yield is similar to what can be obtained with our optimized human cytomegalovirus-immediate early promoter-enhancer (CMV5) for constitutive protein expression in non-complementing cell lines. Using the green fluorescent protein as a reporter, we have shown that a pAdCMV5-derived adenovirus vector expresses about 6-fold more protein in complementing 293 cells and about 12-fold more in non- complementing HeLa cells than an adenovirus vector containing the standard cytomegalovirus promoter. Moreover, a red-shifted variant of green fluorescent protein incorporated in one series of vectors was 12-fold more fluorescent than the S65T mutant, making the detection of the reporter protein possible at much lower levels of expression. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Increased proliferation and elevated levels of protein synthesis are characteristics of transformed and tumor cells. Though components of the translation machinery are often misregulated in cancers, what role tRNA plays in cancer cells has not been explored. We compare genome-wide tRNA expression in cancer-derived versus non-cancer-derived breast cell lines, as well as tRNA expression in breast tumors versus normal breast tissues. In cancer-derived versus non-cancer-derived cell lines, nuclear-encoded tRNAs increase by up to 3-fold and mitochondrial-encoded tRNAs increase by up to 5-fold. In tumors versus normal breast tissues, both nuclear- and mitochondrial-encoded tRNAs increase up to 10-fold. This tRNA over-expression is selective and coordinates with the properties of cognate amino acids. Nuclear- and mitochondrial-encoded tRNAs exhibit distinct expression patterns, indicating that tRNAs can be used as biomarkers for breast cancer. We also performed association analysis for codon usage-tRNA expression for the cell lines. tRNA isoacceptor expression levels are not geared towards optimal translation of house-keeping or cell line specific genes. Instead, tRNA isoacceptor expression levels may favor the translation of cancer-related genes having regulatory roles. Our results suggest a functional consequence of tRNA over-expression in tumor cells. tRNA isoacceptor over-expression may increase the translational efficiency of genes relevant to cancer development and progression.  相似文献   

19.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号