共查询到20条相似文献,搜索用时 0 毫秒
1.
Two intermediary kinases in a protein serine/threonine kinase cascade that is triggered in the response of Swiss 3T3 cells to epidermal growth factor (EGF) have been identified. Several separable EGF-stimulated serine/threonine kinase activities were characterized in the preceding paper (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E.G. (1990) J. Biol. Chem. 265, 11487-11494). These were preincubated in various combinations in the presence of MgATP with chromatographic fractions from unstimulated cell extracts. Activation of the rate of phosphorylation of a synthetic peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, was observed on preincubation of the breakthrough fraction from unstimulated cell extracts with either of two distinct EGF-stimulated kinase activities, each of which phosphorylated myelin basic protein. Kinetic analysis and fractionation by sizing gel chromatography demonstrated that two myelin basic protein kinase activities (of approximately 30 and approximately 50 kDa) represented the activating components in the mixtures whereas the unstimulated cell extract breakthrough gave rise in each case to the activated Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala peptide kinase activity of approximately 110 kDa. Inasmuch as the in vitro activation reactions required magnesium plus ATP and were reversed by protein phosphatase treatment, an activation mechanism involving phosphoryl transfer is suggested. 相似文献
2.
Temperature-dependent tyrosine phosphorylation of microtubule-associated protein kinase in epidermal growth factor-stimulated human fibroblasts. 总被引:3,自引:1,他引:3 下载免费PDF全文
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts. 相似文献
3.
Tyrosine phosphorylation by the epidermal growth factor receptor kinase induces functional alterations in microtubule-associated protein 2 总被引:9,自引:0,他引:9
E Nishida M Hoshi Y Miyata H Sakai T Kadowaki M Kasuga S Saijo H Ogawara T Akiyama 《The Journal of biological chemistry》1987,262(33):16200-16204
We have examined the effect of tyrosine phosphorylation of microtubule-associated protein 2 (MAP2) by the epidermal growth factor (EGF) receptor kinase on its functions. Incubation of MAP2 with the EGF receptor in the presence of ATP resulted in a great decrease in the ability of MAP2 to promote tubulin polymerization. Under a variety of conditions, the decrease in the ability correlated with the extent of phosphorylation of MAP2. Furthermore, another function of MAP2, the actin filament cross-linking activity, was also inactivated by the incubation of MAP2 with the EGF receptor and ATP. The loss of this activity also correlated well with the extent of phosphorylation. These data indicate that tyrosine phosphorylation of MAP2 by the EGF receptor kinase inactivates both the tubulin polymerizing activity and actin filament cross-linking activity of MAP2. Thus, this study has clearly shown that tyrosine phosphorylation could modify the function of a cytoskeletal protein. 相似文献
4.
Role of epidermal growth factor-stimulated protein kinase in control of proliferation of A431 cells 总被引:3,自引:0,他引:3
G N Gill J E Buss C S Lazar A Lifshitz J A Cooper 《Journal of cellular biochemistry》1982,19(3):249-257
Epidermal growth factor (EGF), which stimulates tyrosine-specific protein kinase activity both in vivo and in vitro, inhibits proliferation of A431 human epidermoid carcinoma cells. After mutagenesis clonal cell lines that were resistant to the growth inhibitory effects of EGF were selected. All six variants examined contained decreased EGF-stimulated protein kinase. The number of EGF receptors in variant cells decreased in parallel with EGF-stimulated protein kinase activity so that the specific activity of EGF-stimulated protein kinase per EGF receptor remained constant in variant cell lines with up to tenfold reductions in both activities. This result suggests that both EGF binding and kinase activities reside in the same or closely coupled molecules. The effect of EGF on growth of two resistant variants was examined in detail. Clone 29 contains approximately 50% and clone 4 contains approximately 20% of the EGF-stimulated protein kinase activity of the parental A431 cell line. In serum-supplemented medium, EGF stimulated proliferation of clone 29 but did not affect growth of clone 4. In a 1:1 mixture of DME and F-12 medium without serum, EGF caused both clone 29 and clone 4 to grow as well as in 10% serum. These variants, which were selected for resistance to the growth inhibitory effects of EGF, thus exhibit a strong mitogenic response to EGF. This result suggests that resistance to the growth inhibitory effect of EGF may involve both a decrease in EGF-stimulated protein kinase and an alteration in the response pathway. 相似文献
5.
J Yamauchi H Itoh H Shinoura Y Miyamoto K Tsumaya A Hirasawa Y Kaziro G Tsujimoto 《Biochemical and biophysical research communications》2001,288(5):1087-1094
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells. 相似文献
6.
In vivo activation of a microtubule-associated protein kinase during meiotic maturation of the Xenopus oocyte 总被引:9,自引:0,他引:9
O Haccard C Jessus X Cayla J Goris W Merlevede R Ozon 《European journal of biochemistry》1990,192(3):633-642
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation. 相似文献
7.
Role of protein phosphorylation in the maturation-induced activation of a myelin basic protein kinase from sea star oocytes 总被引:9,自引:0,他引:9
We have previously described the purification of a myelin basis protein (MBP) kinase from maturing sea star oocytes (Sanghera, J. S., Paddon, H. B., Bader, S. A., and Pelech, S. L. (1990) J. Biol. Chem. 265, 52-57). The ability of the purified 44-kDa protein to bind azido-ATP and undergo autophosphorylation on the serine residue implied that it is a protein kinase. Furthermore, partial amino acid sequence data has revealed that it is a novel protein kinase, which we have provisionally designated p44mpk. Autophosphorylation of p44mpk to 0.7 mol of phosphate/mol of enzyme was correlated with a modest (approximately 17%) increase in the MBP-phosphorylating activity of the kinase. Rabbit polyclonal antibody raised against purified p44mpk recognized on immunoblots the protein in highly purified preparations as well as crude oocyte extracts. The affinity-purified anti-p44mpk antibody could immunoprecipitate active kinase, but a subpopulation of the antibody also appeared to be inhibitory. Using this antibody, we have demonstrated that the up to 12-fold stimulation of the cytosolic MBP-phosphorylating activity of this kinase that occurs during sea star oocyte maturation is not due to an increase in the amount of enzyme protein, either from a redistribution within the oocyte or protein synthesis. A slight retardation of the migration of the activated p44mpk on sodium dodecyl sulfate-polyacrylamide gels and its tighter interaction with a MonoQ column is consistent with phosphorylation of the kinase during maturation. p44mpk underwent enhanced phosphorylation when oocytes prelabeled with [32P]orthophosphate were induced to mature with 1-methyladenine. The stimulated MBP-phosphorylating activity of p44mpk in cytosols from maturing oocytes was partly stabilized by the presence of the phosphatase inhibitor beta-glycerol phosphate. Furthermore, treatment of purified p44mpk with protein phosphatase 2A and alkaline phosphatase resulted in 56 and 86% decreases, respectively, in the activity of the kinase. Together, these findings strongly implicate a role for phosphorylation of p44mpk in its activation during sea star oocyte maturation. 相似文献
8.
Hidetaka Kosako Yukiko Gotoh Eisuke Nishida 《Development, growth & differentiation》1996,38(6):577-582
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos. 相似文献
9.
A Hansson 《Cellular signalling》1991,3(4):293-298
Addition of gastrin releasing peptide to serum-starved Swiss 3T3 mouse fibroblasts results in a transient appearance of a myelin basic protein-kinase activity in cytosolic extracts. Increased kinase activity is also observed upon stimulation of cells with bradykinin, epidermal growth factor or 4 beta-phorbol dibutyrate. Chromatographic analysis of the cytosolic extracts show that both gastrin-releasing peptide and 4 beta-phorbol dibutyrate induce the appearance of a kinase activity similar to that induced by epidermal growth factor. The response to gastrin-releasing peptide is abolished by down-regulation of protein kinase C and attenuated by acute inhibition of protein kinase C using staurosporine. The effect of epidermal growth factor was also suppressed under these conditions, albeit to a lesser extent. The results indicate (1) that activation of myelin basic protein kinase(s) may be common to different growth factors, and (2) that protein kinase C may participate in this response, at least in the case of gastrin-releasing peptide. 相似文献
10.
Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. 总被引:9,自引:2,他引:7 下载免费PDF全文
G L''''Allemain J H Her J Wu T W Sturgill M J Weber 《Molecular and cellular biology》1992,12(5):2222-2229
p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase. 相似文献
11.
Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. 总被引:39,自引:0,他引:39
R Seger N G Ahn J Posada E S Munar A M Jensen J A Cooper M H Cobb E G Krebs 《The Journal of biological chemistry》1992,267(20):14373-14381
Two peaks of mitogen-activated protein (MAP) kinase activator activity are resolved upon ion exchange chromatography of cytosolic extracts from epidermal growth factor-stimulated A431 cells. Two forms of the activator (1 and 2) have been purified from these peaks, using chromatography on Q-Sepharose, heparin-agarose, hydroxylapatite, ATP-agarose, Sephacryl S-300, Mono S, and Mono Q. The two preparations each contained one major protein band with an apparent molecular mass of 46 or 45 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Evidence identifying the MAP kinase activators as the 46- and 45-kDa proteins is presented. Using inactive mutants of MAP kinase as potential substrates, it was found that each preparation of MAP kinase activator catalyzes phosphorylation of the regulatory residues, threonine 188 and tyrosine 190, of Xenopus MAP kinase. These results support the concept that the MAP kinase activators are protein kinases. These MAP kinase kinases demonstrate an apparent high degree of specificity toward the native conformation of MAP kinase, although slow autophosphorylation on serine, threonine, and tyrosine residues and phosphorylation of myelin basic protein on serine and threonine residues is detected as well. 相似文献
12.
In vitro linoleic acid activation of protein kinase C 总被引:2,自引:0,他引:2
D S Lester 《Biochimica et biophysica acta》1990,1054(3):297-303
The importance of membrane fluidity in the activation of protein kinase C (PKC) was examined using the membrane fluidizer, linoleic acid, in a well-defined model membrane system. Biochemical and biophysical properties of the system were monitored. Linoleic acid activated PKC to a level of 50% of that observed for diacylglycerol. In contrast, linoleic acid did not directly interact with the phorbol ester binding site as did diacylglycerol. This was determined by the lack of involvement of the ionizable group of the fatty acid with activity and the enhancement of phorbol ester binding by linoleic acid and its ester analogs. The membrane fluidity of this model membrane system in the presence of linoleic acid was increased as determined by fluorescence polarization. This increased the availability of phospholipids, thus, explaining the linoleic acid-induced enhancement of phorbol ester binding. The PKC conformation as determined from intrinsic tryptophan fluorescence spectra was different for lipid mixtures containing linoleic acid or diacylglycerol correlating with the difference in biochemical activation properties. This study provides evidence that membrane fluidization is not the predominant function of the lipid activator in PKC activation, but may play a role in obtaining the preferred membrane state for maximal activation. 相似文献
13.
L Raptis H L Brownell A M Vultur G M Ross E Tremblay B E Elliott 《Cell growth & differentiation》2000,11(6):293-303
Activation of the Ras pathway is central to mitogenesis by a variety of growth factors such as the epidermal growth factor, platelet-derived growth factor, or hepatocyte growth factor. Ras activation requires the function of adaptors such as growth factor receptor-binding protein 2, which can bind either directly or indirectly through Src homology 2 domains to the activated receptor. To examine the role of the Src homology 2 domain of growth factor receptor-binding protein 2 in the mitogenic response triggered by these growth factors, we introduced a peptide (PVPE-phosphono-methylphenylalanine-INQS) that can selectively bind this domain into mouse, rat, or human cells growing on conductive indium-tin oxide-coated glass by in situ electroporation. Cells were subsequently stimulated with growth factors and assessed for activation of a downstream target, extracellular signal-regulated kinase (ERK) 1/2, by probing with antibodies specific for its activated form. Electrodes and slides were configured to provide nonelectroporated control cells side by side with the electroporated ones, both growing on the same type of indium-tin oxide-coated glass surface. The data demonstrate that the peptide can cause a dramatic inhibition of epidermal growth factor or platelet-derived growth factor-mediated ERK1/2 activation and DNA synthesis in vivo, compared with its control phenylalanine-containing counterpart. In contrast, the peptide had a very limited effect on hepatocyte growth factor-triggered ERK1/2 activation and DNA synthesis. These results demonstrate the potential of the in situ electroporation approach described here in the study of the coupling of activated receptor tyrosine kinases to the ERK1/2 cascade. 相似文献
14.
Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. 总被引:5,自引:0,他引:5
Activation of human neutrophils by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP) induces tyrosine phosphorylation of several polypeptides, including a prominent band of approximately 41 kDa. A polypeptide of identical electrophoretic mobility was recognized by a monoclonal antibody raised against a sequence corresponding to amino acids 325-345 of ERK-1, one of a family of mitogen-activated protein (MAP) kinases. To establish the possible identity of these polypeptides, extracts from control and fMLP-treated cells were immunoprecipitated with immobilized antiphosphotyrosine antibodies. Reactivity with anti-ERK-1 antibodies was observed only in the precipitate of chemoattractant-stimulated cells. These data imply that a MAP kinase constitutes at least part of the tyrosine-phosphorylated 41-kDa polypeptide. By using an in vitro renaturation assay, treatment of intact cells with fMLP was found to stimulate several protein kinases, including one of approximately 41 kDa. Renaturation of samples immunoprecipitated with antiphosphotyrosine antibodies revealed the presence of an active protein kinase in chemoattractant-stimulated, but not in control cells. The immunoprecipitated kinase comigrated with the 41-kDa tyrosine phosphorylated polypeptide and the anti-ERK-1 reactive band. We conclude that a MAP kinase closely related or identical to ERK-1 is tyrosine phosphorylated and activated when human neutrophils are stimulated by chemotactic peptides. The rapid phosphorylation of this kinase, which is apparent within seconds, is compatible with a role in the activation of the respiratory burst and/or other neutrophil responses. 相似文献
15.
K Tobe T Kadowaki H Tamemoto K Ueki K Hara O Koshio K Momomura Y Gotoh E Nishida Y Akanuma 《The Journal of biological chemistry》1991,266(36):24793-24803
Two site-specific antibodies have been prepared by immunizing rabbits with chemically synthesized peptides derived from the partial cDNA-predicted amino acid sequence of extracellular signal-regulated kinase 1 (ERK1), which has been proposed to encode the microtubule-associated protein 2 (MAP2) kinase (Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slauer, C., Moomaw, C., Hsu, J., and Cobb, M. H. (1990) Science 249, 64-67). With immunoprecipitation in the presence of sodium dodecyl sulfate (SDS) and Western blotting, an antibody to the peptide containing triple tyrosine residues (alpha Y91) resembling one of the insulin receptor autophosphorylation sites specifically recognized 42- and 44-kDa proteins. On the other hand, an antibody to the peptide corresponding to the COOH terminus portions (alpha C92) of the ERK1 cDNA gene product recognized the 44-kDa protein much more efficiently than the 42-kDa protein. With immunoprecipitation in the absence of SDS, alpha Y91 could barely recognize these two proteins and alpha C92 recognized the 44-kDa protein but failed to recognize the 42-kDa protein. Kinase assays in myelin basic protein (MBP)-containing gel, after SDS-polyacrylamide gel electrophoresis, revealed that insulin or 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MBP kinase activity in alpha Y91 immunoprecipitates comigrated at molecular mass 42 and 44 kDa. On the other hand, the stimulated MBP kinase activity in alpha C92 immunoprecipitates comigrated only at molecular mass 44 kDa. Insulin stimulated the MBP kinase activity in gels and phosphorylation of these two proteins by greater than 10-fold with a maximal level at 5 min. Insulin and TPA rapidly stimulate the phosphorylation of the 42- and 44-kDa proteins via de novo threonine and tyrosine phosphorylation. Tryptic phosphopeptide mapping analysis of the 42- and 44-kDa proteins, respectively, revealed a single major phosphopeptide containing phosphothreonine and phosphotyrosine, which was common to both insulin- and TPA-stimulated phosphoproteins. Protein phosphatase 2A treatment of these two phosphoproteins caused a complete loss of kinase activity with selective dephosphorylation of phosphothreonine. These data strongly suggest that these two proteins are highly related to the mitogen-activated protein (MAP) kinase with an apparent molecular mass of 42 kDa (Ray, L. B., and Sturgill, T. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3753-3757) and that these two immunologically similar but distinct MBP/MAP2 kinases may represent isozymic forms of MBP/MAP2 kinases. These data also demonstrate that insulin and TPA activate MBP/MAP2 kinase activity by de novo phosphorylation of threonine and tyrosine residues via a very similar pathway. 相似文献
16.
Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. 总被引:27,自引:0,他引:27
In rat 1 fibroblasts, insulin has little or no stimulatory effect on the activities of either MAP2 protein kinase or ribosomal protein S6 kinase. In contrast, in rat 1 cells that overexpress the normal human insulin receptor (rat 1 HIRc B; McClain et al. (1987) J. Biol. Chem. 262, 14663-14671), insulin activates both MAP2 and S6 kinase activities close to 5-fold. A MAP2 kinase has been purified from insulin-treated rat 1 HIRc B cells over 6300-fold by chromatography on Q-Sepharose, phenyl-Sepharose, S-Sepharose, phosphocellulose, QAE-Sepharose, UltrogelAcA54, DEAE-cellulose, and a second Q-Sepharose. Its specific activity is approximately 0.8-1 mumol.min-1.mg-1 with MAP2 and 3 mumol.min-1.mg-1 with myelin basic protein. The enzyme preparation contains one major band of Mr = 43,000 upon SDS-polyacrylamide gel electrophoresis, which is immunoblotted by antibodies to phosphotyrosine. A sequence from the 43-kDa band led to the isolation of a cDNA encoding the enzyme, which we have named ERK1 for extracellular signal-regulated kinase (Boulton et al. (1990) Science 249, 64-67). 相似文献
17.
Effects of protein kinase C activation after epidermal growth factor binding on epidermal growth factor receptor phosphorylation 总被引:8,自引:0,他引:8
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors. 相似文献
18.
Multiple hemopoietic growth factors stimulate activation of mitogen-activated protein kinase family members. 总被引:10,自引:0,他引:10
M J Welham V Duronio J S Sanghera S L Pelech J W Schrader 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(5):1683-1693
Stimulation of hemopoietic cells with IL-3, IL-4, IL-5, granulocyte-macrophage-CSF and Steel factor-(SLF) induced tyrosine phosphorylation of a number of protein substrates. Two of these proteins, designated p42 and p44, were tyrosine phosphorylated rapidly in response to treatment with IL-3, IL-5, granulocyte-macrophage-CSF and SLF, but not IL-4. We demonstrate that these common substrates are members of the mitogen-activated protein kinase (MAP kinase) family of protein serine/threonine kinases. Ion-exchange chromatography yielded a peak of MAP kinase activity eluting at 0.3 to 0.32 M NaCl. Immunoblotting of column fractions with antiphosphotyrosine antibodies showed coelution of the peak of MAP kinase enzyme activity with the p42 and p44 tyrosine phosphorylated species, and with two proteins of 42 and 44 kDa which were immunoreactive with anti-MAP kinase antibodies. Moreover, a characteristic shift in mobility of the p42 and p44 species was observed after factor treatment. Time-course analyses and subsequent ion-exchange chromatography demonstrated SLF activation of MAP kinase activity was maximal after 2 min of factor treatment and decreased to basal levels after 30 min stimulation. By contrast, activation of MAP kinase after IL-5 treatment was not as rapid. Maximal activity was observed 15 min after stimulation and remained elevated for up to 60 min after IL-5 addition. Investigation of the role of protein kinase C in the mechanism of activation by these growth factors demonstrated that specific inhibition of protein kinase C led to a reduction, but not ablation, of the SLF and IL-3 induced stimulation of MAP kinase activity. The use of synthetic peptide substrates confirmed SLF and IL-5 activate isoforms of MAP kinases. These results demonstrate that members of the MAP kinase family are involved in common signal transduction events elicited by IL-3, IL-5, granulocyte-macrophage-CSF and Steel factor, but not those involving IL-4. 相似文献
19.