首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte (RBC) galactokinase (GALK) and galactose-1-phosphate uridylyl-transferase (GALT) activities were measured in a random sample of 1,700 (1.082 black and 618 white) pregnant women from the Philadelphia area to estimate the frequency of the genes GALKG and GALTG responsible for the two biochemically distinct forms of galactosemia. Blacks have significantly lower mean RBC GALK activities than whites (P less than .0005). The distribution of individual GALK activities for blacks differs from a normal distribution (X227=43.0, P less than .03) whereas that for whites does not (X224=25.5, P approximately equal to .30). These results are consistent with the thesis that reduced RBC GALK activity in blacks is due to the Philadelphia variant (GALKP), which is common in blacks and rare in whites. The frequency of heterozygotes (GALKG/GALKA, GALKG/GALKP) for GALK galactosemia observed in this sample is 1/340 for the total, 1/347 for blacks, and 1/309 for whites. The existence of the GALKP variant allele has been considered in this determination. However, because a method for distinguishing the GALKP and GALKG alleles became available only in the latter part of the study, the frequency of the GALK G allele in the black population may be underestimated. The mean RBC GALT activity for blacks is higher than that for whites, a difference that may be due to a higher frequency of the Duarte variant allele GALTD in whites. Heterozygotes (GALTG/GALTA) for GALT galactosemia were distinguished by family studies and starch gel electrophoresis from individuals who have half-normal RBC GALT activity due to the GALTD allele. The GALTG/GALTA frequency is 1/212 for the total, 1/217 for blacks, and 1/206 for whites. Of the 1,700 individuals surveyed three had atypically high RBC GALK activity, similar to that found in red blood cells of newborns.  相似文献   

2.
We have previously reported the existence of a polymorphism that causes black populations to have lower mean RBC galactokinase activity than comparable white populations. We have designated this allele the Philadelphia variant, GALKP, and have suggested that it is common in blacks and rare in whites. GALKP individuals have normal WBC GALK activity, in contrast to the half normal WBC GALK activities of heterozygotes for the allele (GALKG) that causes the galactokinase-deficient form of galactosemia. In one family, we have presented evidence for the existence of two sisters heterozygous for both GALKG and GALKP alleles. These individuals have 50% normal WBC GALK activity and less than 50% normal red cell activity. The latter finding indicates that the two variant GALK alleles additively affect RBC activity. The WBC results suggest that the low activity of GALK in RBC of individuals with the GALKP allele is due to its relative instability. We could obtain no evidence for such instability from studies of high reticulocyte bloods or RBC fractionation. Furthermore, we could not demonstrate that the GALK in WBC from GALKP individuals has altered electrophoretic migration.  相似文献   

3.
Inherited deficiency of galactose-1-phosphate uridyltransferase (GALT) can result in a potentially lethal disorder called classic galactosemia. Although the neonatal lethality associated with this disease can be prevented through early diagnosis and a galactose-restricted diet, the lack of effective therapy continues to have consequences: developmental delay, neurological disorders, and premature ovarian failure are common sequelae in childhood and adulthood. Several lines of evidence indicate that an elevated level of galactose-1-phosphate (gal-1-p), the product of galactokinase (GALK), is a major, if not sole, pathogenic mechanism in patients with classic galactosemia. The authors hypothesize that elimination of gal-1-p production by inhibiting GALK will relieve GALT-deficient cells from galactose toxicity. To test this hypothesis, they obtained human GALK using a bacterial expression system. They developed a robust, miniaturized, high-throughput GALK assay (Z' factor = 0.91) and used this assay to screen against libraries composed of 50,000 chemical compounds with diverse structural scaffolds. They selected 150 compounds that, at an average concentration of 33.3 microM, inhibited GALK activity in vitro more than 86.5% and with a reproducibility score of at least 0.7 for a confirmatory screen under identical experimental conditions. Of these 150 compounds, 34 were chosen for further characterization. Preliminary results indicated that these 34 compounds have potential to serve as leads to the development of more effective therapy of classic galactosemia.  相似文献   

4.
In previous reports, it was emphasized that the gene GALKA of galactokinase was the predominant allele in white populations and that another allele, GALKP, which reduces red blood cell activity (RBC GALK), was common in black people. In a group of black Americans living in Philadelphia, the frequency of GALKA was found to be very close to values expected from independent estimation of white admixture. The authors have suggested that the ancestors of these blacks might have been virtually all GALKP homozygous. We have looked for carriers of GALKP genotypes among 73 black Africans; only 33 probands were shown to have a low RBC GALK. To detect white admixture, immunoglobulin allotypes Km and Gm were investigated in 50 individuals of the sample; 15 GALKP carriers with low RBC GALK and 30 of 35 individuals with normal RBC GALK shared Gm phenotypes exclusive to blacks. Our work demonstrates for the first time the polymorphism of GALK in black Africans in the absence of white admixture.  相似文献   

5.
Galactosemia type 2 is an autosomal recessive disorder characterized by the deficiency of galactokinase (GALK) enzyme due to missense mutations in GALK1 gene, which is associated with various manifestations such as hyper galactosemia and formation of cataracts. GALK enzyme catalyzes the adenosine triphosphate (ATP)–dependent phosphorylation of α‐d ‐galactose to galactose‐1‐phosphate. We searched 4 different literature databases (Google Scholar, PubMed, PubMed Central, and Science Direct) and 3 gene‐variant databases (Online Mendelian Inheritance in Man, Human Gene Mutation Database, and UniProt) to collect all the reported missense mutations associated with GALK deficiency. Our search strategy yielded 32 missense mutations. We used several computational tools (pathogenicity and stability, biophysical characterization, and physiochemical analyses) to prioritize the most significant mutations for further analyses. On the basis of the pathogenicity and stability predictions, 3 mutations (P28T, A198V, and L139P) were chosen to be tested further for physicochemical characterization, molecular docking, and simulation analyses. Molecular docking analysis revealed a decrease in interaction between the protein and ATP in all the 3 mutations, and molecular dynamic simulations of 50 ns showed a loss of stability and compactness in the mutant proteins. As the next step, comparative physicochemical changes of the native and the mutant proteins were carried out using essential dynamics. Overall, P28T and A198V were predicted to alter the structure and function of GALK protein when compared to the mutant L139P. This study demonstrates the power of computational analysis in variant classification and interpretation and provides a platform for developing targeted therapeutics.  相似文献   

6.
The structural genes for human galactokinase (GALK) and the human cytosolic form of thymidine kinase (TK1) are located on 17q21–q22. These two loci are tightly linked, and studies on Chinese hamster cell lines have shown that the expression of TK1 and GALK genes may alter simultaneously. We investigated the possibility of a dependent mutation of TK1 and GALK genes in cultured fibroblasts obtained from two patients homozygous for the GALKG-deficient gene. Since we showed that the TK1 level varies as a function of the passage and the growth rate of a given strain, our experiments were performed on nonstored skin fibroblasts, between the third and the fifth passage for both controls and patients. We found that TK1 levels in GALK-deficient cells were almost 75% of those observed in control strains with a similar growth rate. Previous results in the literature have shown a pronounced decrease in TK1 activity in three GALK-deficient fibroblastic strains. We suggest that these disparities of TK1 levels in GALK-deficient fibroblasts may be related either to genetic heterogeneity of GALK deficiency or to differences in culture conditions. This work was supported in part by grants from La CNAMTS and l’Université de Paris-Sud (AI 86 10).  相似文献   

7.
Galactokinase (EC 2.7.1.6) catalyzes the first committed step in the catabolism of galactose. The sugar is phosphorylated at position 1 at the expense of ATP. Lack of fully functional galactokinase is one cause of the inherited disease galactosemia, the main clinical manifestation of which is early onset cataracts. Human galactokinase (GALK1) was expressed in and purified from Escherichia coli. The recombinant enzyme was both soluble and active. Product inhibition studies showed that the most likely kinetic mechanism of the enzyme was an ordered ternary complex one in which ATP is the first substrate to bind. The lack of a solvent kinetic isotope effect suggests that proton transfer is unlikely to be involved in the rate determining step of catalysis. Ten mutations that are known to cause galactosemia were constructed and expressed in E. coli. Of these, five (P28T, V32M, G36R, T288M and A384P) were insoluble following induction and could not be studied further. Four of the remainder (H44Y, R68C, G346S and G349S) were all less active than the wild-type enzyme. One mutant (A198V) had kinetic properties that were essentially wild-type. These results are discussed both in terms of galactokinase structure-function relationships and how these functional changes may relate to the causes of galactosemia.  相似文献   

8.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.  相似文献   

9.
A significant difference between blacks and whites in the distribution of red cell galactokinase (GALK) has been found by Tedesco et al. [2]. From the shapes of the distributions, it was inferred that whites are essentially all homozygous for one allele (GALKA), but blacks are polymorphic. A second allele (GALKP), for lower GALK activity, is presented at high frequency in blacks but rare or absent in whites. This paper presents a method which, assuming the genetic model presented, estimates the genotype composition of the black sample. We make some reasonable biochemical assumptions and fit a mixture of three normal distributions to the black data to obtain an estimate of p, the frequency of GALKA in blacks. The fit of the model to the data is excellent and the best estimate of p is .217 +/- .025. Since admixture of white genes in blacks from the United States is known to be about 20%, the value of p implies that virtually all GALKA alleles were introduced by admixture, and that the ancestral black population was monomorphic for GALKP. If whites are indeed monomorphic for GALKA, they differ from unmixed blacks by a full gene substitution at the locus for GALK.  相似文献   

10.
Galactokinase (GALK) deficiency is an autosomal recessive disorder characterized by hypergalactosemia and cataract formation. Through mass screening of newborn infants, we identified a novel and prevalent GALK variant (designated here as the "Osaka" variant) associated with an A198V mutation in three infants with mild GALK deficiency. GALK activity and the amount of immunoreactive protein in the mutant were both 20% of normal construct in expression analysis. The K(m) values for galactose and ATP-Mg(2+) in erythrocytes with homozygous A198V were similar to those of the healthy adult control subjects. A population study for A198V revealed prevalences of 4.1% in Japanese and 2.8% in Koreans, lower incidence in Taiwanese and Chinese, no incidence in blacks and whites from the United States, and a significantly high frequency (7.8%; P < .023) in Japanese individuals with bilateral cataract. This variant probably originated in Japanese and Korean ancestors and is one of the genetic factors that causes cataract in elderly individuals.  相似文献   

11.
Type I galactosemia is an inborn error resulting from mutations on both alleles of the GALT gene, which leads to the absence or deficiency of galactose-1-phosphate uridyltranseferase (GALT), the second of three enzymes catalyzing the conversion of galactose into glucose. On the basis of residual GALT activity, Type I galactosemia is classified into severe “Classical” and mild “Duarte” phenotypes. Classical galactosemia is frequently associated with S135L, Q188R and K285N mutations in the GALT gene. The functionally neutral N314D variation in the GALT gene is associated with Duarte galactosemia and is widespread among various worldwide populations. The present study aimed at detecting S135L, Q188R and K285N mutations and the N314D variant in the GALT gene by PCR using amplification refractory mutation system (ARMS). ARMS assays were established using standard DNA samples and were used for 8 galactosemia patients and 190 unrelated normal subjects all of Pakistani origin. S135L and K285N mutations were present neither in galactosemia patients nor in normal subjects. Only one galactosemia patient carried Q188R mutation that was in homozygous state. However, the N314D variant was frequently found both in affected (7 out of 16 alleles) and normal subjects (55 out of 380 alleles). This finding indicates that Duarte allele D314 might be far more common in Pakistani population than in European and North American ones.  相似文献   

12.
14C galactose incorporation into the TCA-precipitable material of cultures of fibroblasts deficient in galactokinase (GALK-) was nil. In cultures of fibroblasts deficient in uridyltransferase (GALT-), it was 30 to 75% of control incorporation. In cocultures of GALK and GALT-deficient fibroblasts, 14C incorporation was restored to near-normal levels. This restoration produced in the presence of close cellular contacts was not increased by polyethyleneglycol somatic hybridization. Our results indicate that metabolic cooperation occurred involving the transfer of galactose 1-phosphate from the GALT-deficient to the GALK-deficient cells via intercellular connections.  相似文献   

13.
Galactose-1-phosphate uridylyltransferase (GALT) acts by a double displacement mechanism, catalyzing the second step in the Leloir pathway of galactose metabolism. Impairment of this enzyme results in the potentially lethal disorder, galactosemia. Although the microheterogeneity of native human GALT has long been recognized, the biochemical basis for this heterogeneity has remained obscure. We have explored the possibility of covalent GALT heterogeneity using denaturing two-dimensional gel electrophoresis and Western blot analysis to fractionate and visualize hemolysate hGALT, as well as the human enzyme expressed in yeast. In both contexts, two predominant GALT species were observed. To define the contribution of uridylylated enzyme intermediate to the two-spot pattern, we exploited the null allele, H186G-hGALT. The Escherichia coli counterpart of this mutant protein (H166G-eGALT) has previously been demonstrated to fold properly, although it cannot form covalent intermediate. Analysis of the H186G-hGALT protein demonstrated a single predominant species, implicating covalent intermediate as the basis for the second spot in the wild-type pattern. In contrast, three naturally occurring mutations, N314D, Q188R, and S135L-hGALT, all demonstrated the two-spot pattern. Together, these data suggest that uridylylated hGALT comprises a significant fraction of the total GALT enzyme pool in normal human cells and that three of the most common patient mutations do not disrupt this distribution.  相似文献   

14.
Galactosemia is an inborn error of galactose metabolism secondary to deficiency of galactose-1-phosphate uridyl transferase (GALT). GALT is a polymorphic enzyme and Duarte (D) is the most common enzyme variant. This variant is characterized by faster electrophoretic mobility and reduced activity. Duarte/galactosemia compound heterozygotes (D/G) are commonly identified in galactosemia newborn screening programs. However, these patients do not generally require treatment. By using a candidate mutation approach to define the molecular basis of the Duarte variant of GALT, a close association between the previously reported N314D polymorphism and the Duarte variant of GALT was found. We suggest that N314D encodes the D variant of GALT and that molecular testing for N314D might be useful to confirm a biochemical diagnosis of Duarte variant of GALT.  相似文献   

15.
Summary Galactose-1-phosphate uridyl transferase (GALT), the deficient enzyme in classical galactosemia, was studied by Percoll-gradient age-fractionation of erythrocytes. For normal GALT, a rapid and substantial decrease in GALT activity and loss of most of two isozymes was found to occur in the reticulocyte fractions. The loss of activity was then followed by relative stabilization of both GALT-specific activity and microheterogeneity in mature and aging erythrocytes. When applied to the study of mutant GALT from galactosemic patients, the Percoll-gradient fractionation method permitted detection in the reticulocyte-enriched fractions of up to 5% of normal GALT-specific activity and an isoelectric focusing pattern essentially the same as that of normal GALT. Percoll-gradient fractionation of erythrocytes offers a simple and direct method to study characteristics of GALT activity and microheterogeneity in normal and galactosemic human erythrocytes.  相似文献   

16.
McCorvie TJ  Timson DJ 《IUBMB life》2011,63(9):694-700
Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.  相似文献   

17.
Classic galactosemia, an inborn error of human galactose metabolism, is characterized by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT). The current model for the pathophysiology of this disease ascribes most of its symptoms to the toxicity of intracellular galactose-1-phosphate (Gal-1-P), one of the substrates of GALT which accumulates in the untreated disease state. Recently, a reduction in the intracellular concentration of UDP-Gal (uridine diphosphogalactose), one of the products of GALT, has been described in treated galactosemic patients. We investigated whether galactosemic patients might also have reduced amounts of those macromolecules that depend on UDP-Gal for their biosynthesis. We report a reduction in glycolipids that contain either galactose or its derivative N-acetylgalactosamine and an accumulation of the precursors to these compounds in the brain of a neonate with galactosemia. We also found an imbalance in glycolipids in galactosemic lymphoblasts. This novel biochemical abnormality observed in galactosemic patients is not addressed by dietary galactose-restriction therapy and could explain some of the chronic neurologic and other complications of galactosemia.  相似文献   

18.
The human cDNA and gene for galactose-1-phosphate uridyl transferase (GALT) have been cloned and sequenced. A prevalent mutation (Q188R) is known to cause classic galactosemia (G/G). G/G galactosemia has an incidence of 1/38,886 in 1,396,766 Georgia live-born infants, but a more common variant of galactosemia, Duarte, has an unknown incidence. The proposed Duarte biochemical phenotypes of GALT are as follows: D/N, D/D, and D/G, which have approximately 75%, 50%, and 25% of normal GALT activity respectively. In addition, the D allele has isoforms of its enzyme that have more acidic pI than normal. Here we systematically determine (a) the prevalence of an A-to-G transition at base pair 2744 of exon 10 in the GALT gene, transition that produces a codon change converting asparagine to aspartic acid at position 314 (N314D), and (b) the association of this mutation with the Duarte biochemical phenotype. The 2744G nucleotide change adds an AvaII (SinI) cut site, which was identified in PCR-amplified DNA. In 111 biochemically unphenotyped controls with no history of galactosemia, 13 N314D alleles were identified (prevalence 5.9%). In a prospective study, 40 D alleles were biochemically phenotyped, and 40 N314D alleles were found. By contrast, in 36 individuals known not to have the Duarte biochemical phenotype, no N314D alleles were found. We conclude that the N314D mutation is a common allele that probably causes the Duarte GALT biochemical phenotype and occurs in a predominantly Caucasian, nongalactosemic population, with a prevalence of 5.9%.  相似文献   

19.

Background

Classic galactosemia is a rare genetic metabolic disease with an unmet treatment need. Current standard of care fails to prevent chronically-debilitating brain and gonadal complications.Many mutations in the GALT gene responsible for classic galactosemia have been described to give rise to variants with conformational abnormalities. This pathogenic mechanism is highly amenable to a therapeutic strategy based on chemical/pharmacological chaperones. Arginine, a chemical chaperone, has shown beneficial effect in other inherited metabolic disorders, as well as in a prokaryotic model of classic galactosemia.The p.Q188R mutation presents a high prevalence in the Caucasian population, making it a very clinically relevant mutation. This mutation gives rise to a protein with lower conformational stability and lower catalytic activity. The aim of this study is to assess the potential therapeutic role of arginine for this mutation.

Methods

Arginine aspartate administration to four patients with the p.Q188R/p.Q188R mutation, in vitro studies with three fibroblast cell lines derived from classic galactosemia patients as well as recombinant protein experiments were used to evaluate the effect of arginine in galactose metabolism. This study has been registered at https://clinicaltrials.gov (NCT03580122) on 09 July 2018. Retrospectively registered.

Results

Following a month of arginine administration, patients did not show a significant improvement of whole-body galactose oxidative capacity (p =?0.22), erythrocyte GALT activity (p =?0.87), urinary galactose (p =?0.52) and urinary galactitol levels (p =?0.41). Patients’ fibroblasts exposed to arginine did not show changes in GALT activity. Thermal shift analysis of recombinant p.Q188R GALT protein in the presence of arginine did not exhibit a positive effect.

Conclusions

This short pilot study in four patients homozygous for the p.Q188R/p.Q188R mutation reveals that arginine has no potential therapeutic role for galactosemia patients homozygous for the p.Q188R mutation.
  相似文献   

20.
We determined urinary galactose and 4-hydroxyphenyllactic acid (4HPLA) in 4338 of 5-day-old newborns using a newly developed GC–MS screening method. Fifty-two infants were chemically diagnosed as having transient galactosuria based upon elevated urinary galactose levels (4.78–30.53 mg/mg creatinine, control 1.10±0.89 mg/mg creatinine). These infants did not excrete galactitol or galactonic acid into the urine, which is typical of hereditary galactosemia. Nearly 40% of the transient galactosuria was associated with immature infants (low birth weight or borne before 37 gestational weeks). Immature hepatic function is one explanation for neonatal transient galactosuria, but heterozygotes or the carriers of galactose degradation enzyme deficiencies were also suspected in some of the newborns, judging from the comparisons of urinary galactose and 4HPLA excretion between neonates and patients with galactosemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号