首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin “piracy” may be commonplace.  相似文献   

2.
A methanotroph (strain 68-1), originally isolated from a trichloroethylene (TCE)-contaminated aquifer, was identified as the type I methanotroph Methylomonas methanica on the basis of intracytoplasmic membrane ultrastructure, phospholipid fatty acid profile, and 16S rRNA signature probe hybridization. Strain 68-1 was found to oxidize naphthalene and TCE via a soluble methane monooxygenase (sMMO) and thus becomes the first type I methanotroph known to be able to produce this enzyme. The specific whole-cell sMMO activity of 68-1, as measured by the naphthalene oxidation assay and by TCE biodegradation, was comparatively higher than sMMO activity levels in Methylosinus trichosporium OB3b grown in the same copper-free conditions. The maximal naphthalene oxidation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 551 ± 27 and 321 ± 16 nmol h-1 mg of protein -1, respectively. The maximal TCE degradation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 2,325 ± 260 and 995 ± 160 nmol h-1 mg of protein-1, respectively. The substrate affinity of 68-1 sMMO to naphthalene (Km, 70 ± 4 μM) and TCE (Km, 225 ± 13 μM), however, was comparatively lower than that of the sMMO of OB3b, which had affinities of 40 ± 3 and 126 ± 8 μM, respectively. Genomic DNA slot and Southern blot analyses with an sMMO gene probe from Methylosinus trichosporium OB3b showed that the sMMO genes of 68-1 have little genetic homology to those of OB3b. This result may indicate the evolutionary diversification of the sMMOs.  相似文献   

3.
Soluble methane monooxygenase (sMMO) of Methylosinus trichosporium OB3b is a three-component oxygenase that catalyses the O(2)- and NAD(P)H-dependent oxygenation of methane and numerous other substrates. Despite substantial interest in the use of genetic techniques to study the mechanism of sMMO and manipulate its substrate specificity, directed mutagenesis of active-site residues was previously impossible because no suitable heterologous expression system had been found for expression in a highly active form of the hydroxylase component, which is an (alphabetagamma)(2) complex containing the binuclear iron active site. A homologous expression system that enabled the expression of recombinant wild-type sMMO in a derivative of M. trichosporium OB3b from which the chromosomal copy of the sMMO-encoding operon had been partially deleted was previously reported. Here we report substantial development of this method to produce a system for the facile construction and expression of mutants of the hydroxylase component of sMMO. This new system has been used to investigate the functions of Cys 151 and Thr 213 of the alpha subunit, which are the only nonligating protonated side chains in the hydrophobic active site. Both residues were found to be critical for the stability and/or activity of sMMO, but neither was essential for oxygenation reactions. The T213S mutant was purified to >98% homogeneity. It had the same iron content as the wild type and had 72% wild-type activity toward toluene but only 17% wild-type activity toward propene; thus, its substrate profile was significantly altered. With these results, we have demonstrated proof of the principle for protein engineering of this uniquely versatile enzyme.  相似文献   

4.
Methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol as the first step of methane degradation. A soluble NAD(P)H-dependent methane monooxygenase (sMMO) from the type II methanotrophic bacterium WI 14 was purified to homogeneity. Sequencing of the 16S rDNA and comparison with that of other known methanotrophic bacteria confirmed that strain WI 14 is very close to the genus Methylocystis. The sMMO is expressed only during growth under copper limitation (<0.1 μM) and with ammonium or nitrate ions as the nitrogen source. The enzyme exhibits a low substrate specificity and is able to oxidize several alkanes and alkenes, cyclic hydrocarbons, aromatics, and halogenic aromatics. It has three components, hydroxylase, reductase and protein B, which is involved in enzyme regulation and increases sMMO activity about 10-fold. The relative molecular masses of the native components were estimated to be 229, 41, and 18 kDa, respectively. The hydroxylase contains three subunits with relative molecular masses of 57, 43, and 23 kDa, which are present in stoichiometric amounts, suggesting that the native protein has an α2β2γ2 structure. We detected 3.6 mol of iron per mol of hydroxylase by atomic absorption spectrometry. sMMO is strongly inhibited by Hg2+ ions (with a total loss of enzyme activity at 0.01 mM Hg2+) and Cu2+, Zn2+, and Ni2+ ions (95, 80, and 40% loss of activity at 1 mM ions). The complete sMMO gene sequence has been determined. sMMO genes from strain WI 14 are clustered on the chromosome and show a high degree of homology (at both the nucleotide and amino acid levels) to the corresponding genes from Methylosinus trichosporium OB3b, Methylocystis sp. strain M, and Methylococcus capsulatus (Bath).  相似文献   

5.
Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a “copper switch.” At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its active site, while Xox-MeDHs have been shown to have rare earth elements in their active site. We show here that the expression levels of Mxa-MeDH and Xox-MeDH in Methylosinus trichosporium OB3b significantly decreased and increased, respectively, when grown in the presence of cerium but the absence of copper compared to the absence of both metals. Expression of sMMO and pMMO was not affected. In the presence of copper, the effect of cerium on gene expression was less significant, i.e., expression of Mxa-MeDH in the presence of copper and cerium was slightly lower than in the presence of copper alone, but Xox-MeDH was again found to increase significantly. As expected, the addition of copper caused sMMO and pMMO expression levels to significantly decrease and increase, respectively, but the simultaneous addition of cerium had no discernible effect on MMO expression. As a result, it appears Mxa-MeDH can be uncoupled from methane oxidation by sMMO in M. trichosporium OB3b but not from pMMO.  相似文献   

6.
The methanotrophic bacterium Methylosinus trichosporium OB3b is unusually active in degrading recalcitrant haloalkanes such as trichloroethylene (TCE). The first and rate-limiting step in the degradation of TCE is catalyzed by a soluble methane monooxygenase (sMMO). This enzyme is not expressed when the cells are grown in the presence of copper at concentrations typically found in polluted groundwater. Under these conditions, M. trichosporium OB3b expresses a particulate form of the enzyme (pMMO), which has a narrow substrate specificity and does not degrade TCE at any significant rate. We have isolated M. trichosporium OB3b mutants that are deficient in pMMO and express sMMO constitutively in the presence of elevated concentrations of copper. One mutant (PP358) exhibited a TCE degradation rate which was almost twice as high as that of the wild-type strain grown under optimal conditions (without copper). All of the mutants lost the ability to express pMMO activity and to form stacked intracellular membranes characteristic of wild-type cells expressing pMMO.  相似文献   

7.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

8.
Methanotrophs expressing soluble methane monooxygenase (sMMO) may find use in a variety of industrial applications. However, sMMO expression is strongly inhibited by copper, and the growth rate may be limited by the aqueous solubility of methane. In this study, addition of allylthiourea decreased intracellular copper in Methylosinus trichosporium OB3b, allowing sMMO production at Cu/biomass ratios normally not permitting sMMO synthesis. The presence of about 1.5 μmoles intracellular Cu g−1 dry biomass resulted in sMMO activity of about 250 μmoles 1-napthol formed per hour gram dry biomass whether this intracellular Cu concentration was achieved by Cu limitation or by allylthiourea addition. No loss of sMMO activity occurred when the growth substrate was switched from methane to methanol when allylthiourea had been added to growth medium containing copper. Addition of copper to medium that was almost copper-free increased the yield of dry biomass from methanol from 0.20 to 0.36 g g−1, demonstrating that some copper was necessary for good growth. This study demonstrated a method by which sMMO can be produced by M. trichosporium OB3b while growing on methanol in copper-containing medium.  相似文献   

9.
Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO.  相似文献   

10.
Methanotrophs have been widely investigated for in situ bioremediation due to their ubiquity and their ability to degrade halogenated hydrocarbons through the activity of methane monooxygenase (MMO). It has been speculated that cells expressing the soluble form of MMO (sMMO) are more efficient in cleaning up sites polluted with halogenated hydrocarbons due to its broader substrate range and relatively fast degradation rates compared cells expressing the other form of MMO, the particulate MMO (pMMO). To examine this issue, the biodegradation of mixtures of chlorinated solvents, i.e., trichloroethylene (TCE), trans-dichloroethylene (t-DCE), and vinyl chloride (VC), by Methylosinus trichosporium OB3b in the presence of methane using either form of MMO was investigated over longer time frames than those commonly used, i.e., days instead of hours. Growth of M. trichosporium OB3b along with pollutant degradation were monitored and analyzed using a simple comparative model developed from the Ω model created for analysis of the competitive binding of oxygen and carbon dioxide by ribulose bisphosphate carboxylase. From these findings, it appears that at concentrations of VC, t-DCE, and TCE greater than 10 μM each, methanotrophs expressing pMMO have a competitive advantage over cells expressing sMMO due to higher growth rates. Despite such an apparent growth advantage, pMMO-expressing cells degraded less of these substrates at these concentrations than sMMO-expressing cells during active growth. If the concentrations were increased to 100 μM, however, not only did pMMO-expressing cells grow faster, they degraded more of these pollutants and did so in a shorter amount of time. These findings suggest that the relative rates of growth substrate and pollutant degradation are important factors in determining which form of MMO should be considered for pollutant degradation.  相似文献   

11.
12.
13.
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gmr mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gmr mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.  相似文献   

14.
Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (−)-α-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (−)-α-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (−)-α-pinene, γ-terpinene, or β-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (−)-α-pinene, (S)-(−)-limonene, (R)-(+)-limonene, and γ-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, α-pinene oxide, linalool, α-terpineol] and a noncyclic hydrocarbon (β-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.  相似文献   

15.
Soluble methane monooxygenase (sMMO) activity in Methylosinus trichosporium OB3b was found to be more strongly affected as copper-to-biomass ratios changed in a newly developed medium, M2M, which uses pyrophosphate for metal chelation, than in nitrate mineral salts (NMS), which uses EDTA. When M2M medium was amended with EDTA, sMMO activity was similar to that in NMS medium, indicating that EDTA-bound copper had lower bioavailability than pyrophosphate-bound copper. EDTA did not limit the association of copper with the cells; rather, copper was sequestered in a form which did not affect sMMO activity.  相似文献   

16.
Methylosinus trichosporium OB3b biosynthesizes a broad specificity soluble methane monooxygenase that rapidly oxidizes trichloroethylene (TCE). The selective expression of the soluble methane monooxygenase was followed in vivo by a rapid colorimetric assay. Naphthalene was oxidized by purified soluble methane monooxygenase or by cells grown in copper-deficient media to a mixture of 1-naphthol and 2-naphthol. The naphthols were detected by reaction with tetrazotized o-dianisidine to form purple diazo dyes with large molar absorptivities. The rate of color formation with the rapid assay correlated with the velocity of TCE oxidation that was determined by gas chromatography. Both assays were used to optimize conditions for TCE oxidation by M. trichosporium OB3b and to test several methanotrophic bacteria for the ability to oxidize TCE and naphthalene.Abbreviations A600 absorbance due to cell density measured at 600 nm - HPLC high pressure liquid chromatography - NADH reduced nicotinamide adenine dinucleotide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - sMMO soluble methane monooxygenase - TCE trichloroethylene  相似文献   

17.
Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when added as HgCl2 and, in doing so, reduced toxicity associated with Hg(II) for both Alphaproteobacteria methanotrophs, including M. trichosporium OB3b, M. trichosporium OB3b ΔmbnA (a mutant defective in methanobactin production), and Methylocystis sp. strain SB2, and a Gammaproteobacteria methanotroph, Methylomicrobium album BG8. Mercury binding by methanobactin was evident in both the presence and absence of copper, despite the fact that methanobactin had a much higher affinity for copper due to the rapid and irreversible binding of mercury by methanobactin. The formation of a gray precipitate suggested that Hg(II), after being bound by methanobactin, was reduced to Hg(0) but was not volatilized. Rather, mercury remained associated with methanobactin and was also found associated with methanotrophic biomass. It thus appears that although the mercury-methanobactin complex was cell associated, mercury was not removed from methanobactin. The amount of biomass-associated mercury in the presence of methanobactin from M. trichosporium OB3b was greatest for M. trichosporium wild-type strain OB3b and the ΔmbnA mutant and least for M. album BG8, suggesting that methanotrophs may have selective methanobactin uptake systems that may be based on TonB-dependent transporters but that such uptake systems exhibit a degree of infidelity.  相似文献   

18.
Methylosinus trichosporium OB3b produces an extracellular copper-binding ligand (CBL) with high affinity for copper. Wild-type cells and mutants that express soluble methane monooxygenase (sMMO) in the presence and absence of copper (sMMOc) were used to obtain cell exudates that were separated and analyzed by size exclusion high-performance liquid chromatography. A single chromatographic peak, when present, contained most of the aqueous-phase Cu(II) present in the culture medium. In mutant cultures that were unable to acquire copper, extracellular CBL accumulated to high levels both in the presence and in the absence of copper. Conversely, in wild-type cultures containing 5 μM Cu(II), extracellular CBL was maintained at a low, steady level during exponential growth, after which the external ligand was rapidly consumed. When Cu(II) was omitted from the growth medium, the wild-type organism produced the CBL at a rate that was proportional to cell density. After copper was added to this previously Cu-deprived culture, the CBL and copper concentrations in the medium decreased at approximately the same rate. Apparently, the extracellular CBL was produced throughout the period of cell growth, in the presence and absence of Cu(II), by both the mutant and wild-type cultures and was reinternalized or otherwise utilized by the wild-type cultures when it was bound to copper. CBL produced by the mutant strain facilitated copper uptake by wild-type cells, indicating that the extracellular CBLs produced by the mutant and wild-type organisms are functionally indistinguishable. CBL from the wild-type strain did not promote copper uptake by the mutant. The molecular weight of the CBL was estimated to be 500, and its association constant with copper was 1.4 × 1016 M−1. CBL exhibited a preference for copper, even in the presence of 20-fold higher concentrations of nickel. External complexation may play a role in normal copper acquisition by M. trichosporium OB3b. The sMMOc phenotype is probably related to the mutant’s inability to take up CBL-complexed copper, not to a defective CBL structure.  相似文献   

19.
Methane oxidation by pure cultures of the methanotrophs Methylobacter albus BG8 and Methylosinus trichosporium OB3b was inhibited by ammonium choride and sodium nitrite relative to that in cultures assayed in either nitrate-containing or nitrate-free medium. M. albus was generally more sensitive to ammonium and nitrite than M. trichosporium. Both species produced nitrite from ammonium; the concentrations of nitrite produced increased with increasing methane concentrations in the culture headspaces. Inhibition of methane oxidation by nitrite was inversely proportional to headspace methane concentrations, with only minimal effects observed at concentrations of>500 ppm in the presence of 250 μM nitrite. Inhibition increased with increasing ammonium at methane concentrations of 100 ppm. In the presence of 500 μM ammonium, inhibition increased initially with increasing methane concentrations from 1.7 to 100 ppm; the extent of inhibition decreased with methane concentrations of > 100 ppm. The results of this study provide new insights that explain some of the previously observed interactions among ammonium, nitrite, methane, and methane oxidation in soils and aquatic systems.  相似文献   

20.
Soluble methane monooxygenase (sMMO) from methane-oxidizing bacteria is a multicomponent nonheme oxygenase that naturally oxidizes methane to methanol and can also cooxidize a wide range of adventitious substrates, including mono- and diaromatic hydrocarbons. Leucine 110, at the mouth of the active site in the α subunit of the hydroxylase component of sMMO, has been suggested to act as a gate to control the access of substrates to the active site. Previous crystallography of the wild-type sMMO has indicated at least two conformations of the enzyme that have the “leucine gate” open to different extents, and mutagenesis of homologous enzymes has indicated a role for this residue in the control of substrate range and regioselectivity with aromatic substrates. By further refinement of the system for homologous expression of sMMO that we developed previously, we have been able to prepare a range of site-directed mutations at position 110 in the α subunit of sMMO. All the mutants (with Gly, Cys, Arg, and Tyr, respectively, at this position) showed relaxations of regioselectivity compared to the wild type with monoaromatic substrates and biphenyl, including the appearance of new products arising from hydroxylation at the 2- and 3- positions on the benzene ring. Mutants with the larger Arg and Trp residues at position 110 also showed shifts in regioselectivity during naphthalene hydroxylation from the 2- to the 1- position. No evidence that mutagenesis of Leu 110 could allow very large substrates to enter the active site was found, however, since the mutants (like the wild type) were inactive toward the triaromatic hydrocarbons anthracene and phenanthrene. Thus, our results indicate that the “leucine gate” in sMMO is more important in controlling the precision of regioselectivity than the sizes of substrates that can enter the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号