首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Aggregation of variables allows to approximate a large scale dynamical system (the micro-system) involving many variables into a reduced system (the macro-system) described by a few number of global variables. Approximate aggregation can be performed when different time scales are involved in the dynamics of the micro-system. Perturbation methods enable to approximate the large micro-system by a macro-system going on at a slow time scale. Aggregation has been performed for systems of ordinary differential equations in which time is a continuous variable. In this contribution, we extend aggregation methods to time-discrete models of population dynamics. Time discrete micro-models with two time scales are presented. We use perturbation methods to obtain a slow macro-model. The asymptotic behaviours of the micro and macro-systems are characterized by the main eigenvalues and the associated eigenvectors. We compare the asymptotic behaviours of both systems which are shown to be similar to a certain order.  相似文献   

2.
The relationship between nutrient consumption and chronic disease risk is the focus of a large number of epidemiological studies where food frequency questionnaires (FFQ) and food records are commonly used to assess dietary intake. However, these self-assessment tools are known to involve substantial random error for most nutrients, and probably important systematic error as well. Study subject selection in dietary intervention studies is sometimes conducted in two stages. At the first stage, FFQ-measured dietary intakes are observed and at the second stage another instrument, such as a 4-day food record, is administered only to participants who have fulfilled a prespecified criterion that is based on the baseline FFQ-measured dietary intake (e.g., only those reporting percent energy intake from fat above a prespecified quantity). Performing analysis without adjusting for this truncated sample design and for the measurement error in the nutrient consumption assessments will usually provide biased estimates for the population parameters. In this work we provide a general statistical analysis technique for such data with the classical additive measurement error that corrects for the two sources of bias. The proposed technique is based on multiple imputation for longitudinal data. Results of a simulation study along with a sensitivity analysis are presented, showing the performance of the proposed method under a simple linear regression model.  相似文献   

3.
4.
Recent extensive analyses of human DNA polymorphism reveal that the ancestral haplotype at various genetic loci occurs almost exclusively in African samples. We develop a coalescence-based simulation method in stepping-stone models with population expansion and examine the probability (P(A)) that the ancestral haplotype is found in African samples and the probability (Q(A)) that the most recent common ancestor of sampled genes occurs in Africa. These probabilities and other summary statistics are used to infer the human demographic history. It is shown that the high observed P(A) value cannot be explained simply by sampling bias. Rather, it suggests that the African population has been more strongly subdivided and isolated from each other than the non-African population and that there must have been some African populations which were not directly involved in the Out-of-Africa expansion in the late Pleistocene.  相似文献   

5.
BACKGROUND: Haplotype sharing statistics have been introduced in an ad-hoc way, often relying heavily on permutation testing. As a result, applying these approaches to whole genome association studies or to evaluate their properties in extensive simulation experiments is problematic. Further, permutation testing may be inappropriate in the presence of phase ambiguity and population stratification. AIMS: To present a simple framework for a class of haplotype sharing statistics useful for association mapping in case-parent trio data. This framework allows derivation of novel haplotype sharing tests as well as simple variance estimators and asymptotic distributions for haplotype sharing tests. RESULTS AND CONCLUSIONS: We validated that our approach is appropriately sized using simulated data, and illustrate the methodology by analyzing a Crohn's disease dataset. We find that haplotype-based analyses are much more powerful than single-locus analyses for these data.  相似文献   

6.
7.
On parameter estimation in population models   总被引:2,自引:0,他引:2  
We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population.  相似文献   

8.
We examine some simple population models that incorporate a time delay which is not a constant but is instead a known periodic function of time. We examine what effect this periodic variation has on the linear stability of the equilibrium states of scalar population models and of a simple predator prey system. The case when the delay differs from a constant by a small amplitude periodic perturbation can be treated analytically by using two-timing methods. Of particular interest is the case when the system is initially marginally stable. The introduction of variation in the delay can then have either a stabilising effect or a destabilizing one, depending on the frequency of the periodic perturbation. The case when the periodic perturbation has large amplitude is studied numerically. If the fluctuation is large enough the effect can be stabilising.  相似文献   

9.
Shared parameter models under random effects misspecification   总被引:2,自引:0,他引:2  
A common objective in longitudinal studies is the investigationof the association structure between a longitudinal responseprocess and the time to an event of interest. An attractiveparadigm for the joint modelling of longitudinal and survivalprocesses is the shared parameter framework, where a set ofrandom effects is assumed to induce their interdependence. Inthis work, we propose an alternative parameterization for sharedparameter models and investigate the effect of misspecifyingthe random effects distribution in the parameter estimates andtheir standard errors.  相似文献   

10.
11.
Agent-based simulation models with large experiments for a precise and robust result over a vast parameter space are becoming a common practice, where enormous runs intrinsically require highly intensive computational resources. This paper proposes a grid based simulation environment, named Social Macro Scope (SOMAS) to support parallel exploration on agent-based models with vast parameter space. We focus on three types of simulation methods for agent-based models with various objectives (1) forward simulation to conduct experiments in a straightforward way by simply operating sets of parameter values to perform sensitivity analysis; (2) inverse simulation to search for solutions that reduce the error between simulated results and actual data by means of solving “inverse problem”, which executes the simulation steps in a reverse order and employs optimization algorithms to fit the simulation results to the desired objectives; and (3) model selection to find an optimal model structure with subset of parameters and procedures, which conducts two-layer optimization to obtain a simple and more accurate simulation result. We have confirmed the practical scalability and efficiency of SOMAS by one case study in history simulation domain.  相似文献   

12.
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.  相似文献   

13.
Analyses of different robustness aspects for models of the direct signal transduction pathway of receptor-induced apoptosis is presented. Apoptosis is a form of programmed cell death, removing unwanted cells within multicellular organisms to maintain a proper balance between cell reproduction and death. Its signalling pathway includes an activation feedback loop that generates bistable behaviour, where the two steady states can be seen as 'life' and 'death'. Inherent robustness, widely recognised in biological systems, is of major importance in apoptosis signalling, as it guarantees the same cell fate for similar conditions. First, the influence of the stochastic nature of reactions indicating a role for inhibition reactions as noise filters and justifying a deterministic approach in the further analyses is evaluated. Second, the robustness of the bistable threshold with respect to parameter changes is evaluated by statistical methods, showing the need to balance both the forward and the back part of the activation loop. These analyses can also discriminate between the models favouring the model consistent with novel biological findings. The parameter robustness analyses are also applicable to other signal transduction networks, as several have been shown to display bistable behaviour. These methods therefore have a range of possible applications in systems biology not only to measure robustness, but also for model discrimination.  相似文献   

14.
Zhang D  Davidian M 《Biometrics》2001,57(3):795-802
Normality of random effects is a routine assumption for the linear mixed model, but it may be unrealistic, obscuring important features of among-individual variation. We relax this assumption by approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and Nychka (1987, Econometrics 55, 363-390), which includes normality as a special case and provides flexibility in capturing a broad range of nonnormal behavior, controlled by a user-chosen tuning parameter. An advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out using standard optimization techniques. We demonstrate that standard information criteria may be used to choose the tuning parameter and detect departures from normality, and we illustrate the approach via simulation and using longitudinal data from the Framingham study.  相似文献   

15.
We present a novel application of methods for analysis of high-dimensional longitudinal data to a comparison of facial shape over time between babies with cleft lip and palate and similarly aged controls. A pairwise methodology is used that was introduced in Fieuws and Verbeke (2006) in order to apply a linear mixed-effects model to data of high dimensions, such as describe facial shape. The approach involves fitting bivariate linear mixed-effects models to all the pairwise combinations of responses, where the latter result from the individual coordinate positions, and aggregating the results across repeated parameter estimates (such as the random-effects variance for a particular coordinate). We describe one example using landmarks and another using facial curves from the cleft lip study, the latter using B-splines to provide an efficient parameterization. The results are presented in 2 dimensions, both in the profile and in the frontal views, with bivariate confidence intervals for the mean position of each landmark or curve, allowing objective assessment of significant differences in particular areas of the face between the 2 groups. Model comparison is performed using Wald and pseudolikelihood ratio tests.  相似文献   

16.
A number of recent experiments have revealed the existence of mutants with different free run periods in their circadian rhythms. Parameter variations in mathematical models can be used to simulate such changes. In addition, phase response curves (PRC) are derived and the effect of parameter variation in their shape is studied. It is shown that changes in global parameters can also distort their shape. Therefore one cannot conclude that genetic experiments provide evidence in favor of “chronon” models since “kinetic” models can also simulate their outcome.  相似文献   

17.
Radiation and Environmental Biophysics - After incorporation of radioactive substances, workers are routinely checked by bioassays (isotopic activity excreted via urine, measurements of...  相似文献   

18.
We present a stochastic model of the within-host population dynamics of lymphatic filariasis, and use a simulated goodness-of-fit (GOF) method to estimate immunological parameters and their confidence intervals from experimental data. A variety of deterministic moment closure approximations to the stochastic system are explored and compared with simulation results. For the maximum GOF parameter estimates, none of the methods of closure accurately reproduce the behaviour of the stochastic model. However, direct analysis of the stochastic model demonstrates that the high levels of variation observed in the data can be reproduced without requiring parameters to vary between hosts. This indicates that the observed aggregation of parasite load may be dynamically generated by random variation in the development of an effective immune response against parasite larvae.  相似文献   

19.
Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.  相似文献   

20.
ABSTRACT: Computer simulation has been an important technique to capture the dynamics of biochemical networks. In most networks, however, few kinetic parameters have been measured in vivo because of experimental complexity. We develop a kinetic parameter estimation system, named the CADLIVE Optimizer, which comprises genetic algorithms-based solvers with a graphical user interface. This optimizer is integrated into the CADLIVE Dynamic Simulator to attain efficient simulation for dynamic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号