首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riassunto Nell'ambito del progetto «Flora Palinologica Italiana» e proseguendo lo studio delle Corylaceae, è qui presentata la scheda diCarpinus betulus L., con alcune osservazioni sul numero/posizione delle aperture e sulle principali differenze tra polline «fresco» e polline acetolizzato.
Summary According to the program «Palynological Italian Flora», and continuing the study of the Italian Corylaceae, the palynological card ofCarpinus betulus L. is shown. The study is carried out on pollen coming from three different localities and regards both «fresh» and acetolyzed pollen. For each sample, measurements are carried out on 30 «fresh» pollen grains in glicerol jelly and on 30 acetolyzed pollen grains in water/glicerol 1/1; general observations regard 500 «fresh» and 500 acetolyzed pollen grain/sample. Some morphological observations on the aperture number/position and differencies between «fresh» and acetolized pollen are pointed out.
  相似文献   

2.
Summary A comparison betweenParietaria pollen count and allergic symptoms of rhino-conjunctivitis in the early season was used in utilized to determine a «threshold-value» for this pollen. Clinical data were obtained from diary-cards of 34 allergic patients and pollen data from a volumetric sampling, carried out by means of a Hirst-Burkard pollen-trap. A significant correlation (r=0.98) was found between pollen count and symptom scores. Mild symptoms were registered with concentrations above 10–15 pollens/m3. Severe symptoms occurred when pollen count exceeded 80/m3/24 h., and over 90% of patients recorded symptoms. The importance of the late reactions and of the total allergenic airborne content are emphasized.  相似文献   

3.
Riassunto Nell'ambito del programma della Flora Palinologica Italiana, Sezione Aerobiologica, viene presentata la scheda palinologica diCedrus libani A. Rich. (specie esotica). Sono puntualizzate le differenze tra i parametri morfologici del polline «fresco» e acetolizzato.
Summary According to the program «Palynological Italian Flora, Aeropalynological Section» the palynological card ofCedrus libani A. Rich. (exotic species) relevant to «fresh» and acetolyzed pollen grains is presented. The differences between the morphological parameters of fresh and acetolyzed pollen are pointed out.
  相似文献   

4.
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000–2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257–265, 1952). The pollen season (start date, finish date) for grass and birch were determined using a first derivative method. Meteorological variables such as daily rainfall; maximum, minimum and average temperatures; cumulative sum of Sunshine duration; wind speed; and relative humidity were related to the grass and birch pollen counts for the pre-peak, post peak and the entire pollen season. The meteorological variables were correlated with the pollen count data for the following temporal supports: same-day, 1-day prior, 1-day mean prior, 3-day mean prior, 7-day mean prior. The direction of influence (positive/negative) of meteorological variables on pollen count varied for birch and grass, and also varied when the pollen season was treated as a whole season, or was segmented into the pre-peak and post-peak seasons. Maximum temperature, sunshine duration and rainfall were the most important variables influencing the count of grass pollen in the atmosphere. Both maximum temperature (pre-peak) and sunshine produced a strong positive correlation, and rain produced a strong negative correlation with grass pollen count in the air. Similarly, average temperature, wind speed and rainfall were the most important variables influencing the count of birch pollen in the air. Both wind speed and rain produced a negative correlation with birch pollen count in the air and average temperature produced a positive correlation.  相似文献   

5.
Summary Mugwort pollen flight and pollen emission are characterized by a distinct biological rhythm with emission in the early morning hours (6:00–11:00 a.m. CEST). Pollen traps at roof level monitor the daily and yearly variation of mugwort pollen flight later and in lower quantities than those installed at ground level because of the different daily variation of convection at various air levels. The daily variation of mugwort pollen flight can be described by mathematical functions. Because of these significant differences between the catch at different levels, the supposed high allergic potential of mugwort has to be discussed.  相似文献   

6.
Summary In Melbourne, Australia, grass pollen allergens, especially from ryegrass, are a major cause of allergic hayfever and asthma. This review outlines recent developments in our understanding of how grass pollen allergens find their way into the atmosphere and how they are transported in particulate form. Much of this work has relied on antibody technology in immunological and immunocytochemical investigations. The localisation of allergens in situ has proved difficult due to their water-soluble character. Recently, allergens have been localised in developing ryegrass pollen by dryfixation, rapid-freeze and freeze-substitution techniques. This involved anthers being substituted in a mixture of aldehydes, organic solvents, and 2,2-dimethoxypropane. Incubation in dimethylsulfoxide prior to embedding in LR Gold resin provided good infiltration with freeze-substituted material. Immunogold-labelled sections show that the major allergens, Lol p 1 and Lol p 5, are synthesised in the pollen cytoplasm from the early bicellular stage, soon after the first starch granules are formed. From the early tricellular stage, Lol p 5 moves into the starch granules where it remains until maturity. Lol p 1 is localised in the cytoplasm of mature pollen grains. The incidence of airborne grass pollen, as measured in pollen traps, correlates with hayfever symptoms. Forecasting models which rely on rainfall and temperature data have been produced for the grass pollen (daily and seasonal) counts in Melbourne. Research over the past six years has shed light on the causes of grass-pollen-induced asthma. Micronic particles in the atmosphere may be starch granules originating from pollen grains osmotically ruptured by rainwater. Ultrastructural and immunological characterisation of micronic particles collected from outdoor air filters confirm the presence of airborne starch granules. These are loaded with grass pollen allergens, occur in the atmosphere especially after rainfall, and correlate significantly with instances of allergic asthma. Diesel particles might also play a role in the transmission of grass pollen allergens and thus become an extra asthma trigger. A variation in the mode of release of micronic particles occurs in other species, such as birch, where such particles are derived from burst birch pollen tubes. These particles are positive for Bet v 1 and are starch granules which are released into the atmosphere after light rain as a result of pollen germination on, e.g., leaves. After subsequent rupture of pollen tubes their contents are released when conditions become drier.Abbreviations DECP diesel exhaust carbon particles - DMP 2,2-dimethoxypropane - GPC grass pollen count - IgE immunoglobulin E - IgG immunoglobulin G - OGPS onset of the grass pollen season  相似文献   

7.
Summary We collected the daily pollen samples during a 3-year period (Febr '87–Dec '89), using a Burkard volumetric trap, located on a high level area in the center of the city.Parietaria officinalis pollen was not differentiated under microscope from the other Urticaceae but through phenological criteria. The patients included in the detection of the sensitivity toP. officinalis pollen came from the Out-patient Clinic of Bronchial Asthma of the General Hospital «G. Papanikolaou». They had a seasonal pollinosis and they were submitted to Pricktest using a battery of 22 groups and aP. officinalis pollen extract. The Urticaceae pollen appears first in the atmosphere of Thessaloniki in the end of March, shows a peak in the beginning of May and continues to be present till the end of August. We detectedP. officinalis pollen sensitivity combined with other allergens in 24.1% of the patients and in 1.4% a monosensitivity toP. officinalis.  相似文献   

8.
Since 1986 the atmosphere in Tulsa, Oklahoma has been monitored for airborne pollen and spores with a Burkard 7-day spore trap situated on the roof of a building at The University of Tulsa. The present study specifically examined the early spring tree pollen season for several local taxa and the occurrence of pre-season pollen during December and January. Knowledge of the local pollen season will help identify the presence of out-of-season pollen and possible long distance transport (LDT) events. Average daily concentrations of airborne pollen for species ofBetula, Quercus, Ulmus, and Cupressaceae were determined for each year from 1987 to 1996. The data showed that during the early spring the precise pollination periods for these allergenic tree species are highly variable. There were considerable variations in start date, season length, peak concentration, date of peak, and cumulative season total. The start dates forUlmus, Betula, andQuercus varied by 30 days or more, while the early spring Cupressaceae pollen showed the least variation in start date (only 23 days). More research is needed to understand the mechanisms which govern the onset and magnitude of pollen release. Although several reports have documented episodes of long distance transport (LDT) of pollen, the actual contribution of out-of-season or out-of-region pollen to local air spora is poorly known. The current study also re-examined the LDT ofJuniperus ashei pollen in Oklahoma.Juniperus pollen appeared in the Tulsa atmosphere on 40% of the days in December and January with concentrations as high as 2400 pollen grains/m3 of air; however, no local populations ofJuniperus pollinate at this time of the year. High concentrations occurred on days with southerly winds suggesting thatJuniperus ashei populations in southern Oklahoma and Texas were the pollen source. Since no local pollen is present in the Tulsa atmosphere in December and January, this example of LDT has been easy to document.  相似文献   

9.
The presence of airborne Cyperaceae and Juncaceae pollen was quantified using volumetric aerobiological traps over a 10-year period at two sites in SW Spain separated by 60 km (Badajoz 10 years, Mérida 3 years). The Pearson correlation coefficient was calculated between the daily and hourly concentrations. The values of the principal meteorological parameters—temperature, rainfall, relative humidity, and speed and direction of the wind—were calculated during the study period, and with the accumulated values corresponding to the period prior to pollination. The beginning and ending dates and the duration of the main pollen season (MPS) were also analyzed. Even though both families are anemophilous, the presence of their pollens in the air was low. The annual accumulated daily concentrations were in the range 1.8–15.8 for Juncaceae and 111.8–473.9 for Cyperaceae—values far lower than any other anemophilous pollen type. The Cyperaceae pollen concentration peaked between 09:00 and 12:00. The meteorological factor most closely related to its daily variations was found to be the wind direction, showing that location of the sources is of great importance. The results lend support to the hypothesis of a limitation of allogamous reproduction in favour of vegetative multiplication in both families. Nevertheless, the principal source of the airborne Cyperaceae pollen was found to be Scirpus holoschoenus, whose pollen is distinguishable from the rest. Hence, because of its large production of pollen, this species can be characterized as anemophilous and allogamous. Rainfall in the preceding autumn seemed to be responsible for the amount of Cyperaceae pollen in the air, since a lack of rain was found to be associated with lower densities in the traps. For the Juncaceae, it seems that the temperatures of the preceding December constituted the most limiting meteorological parameter.  相似文献   

10.
Puc M 《Aerobiologia》2011,27(3):191-202
The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004–2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM10 and SO2 was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.  相似文献   

11.
In the present study determinative factors for ragweed (Ambrosia elatior) pollination were studied in Budapest between 1991 and 1996. The aim was to create a model to predict the day-to-day pollen count variation. The pollen concentration is determined mostly by the potential concentration and the mean concentration of the three previous days. These two variables can explain 56% of the total variance. Daily mean and maximum temperature, daily temperature fluctuation and the number of hours of sunshine in the previous day have a significant positive effect on the pollen count. The amount of precipitation on the previous day, relative humidity on the actual and on the previous day influence it negatively. When a cyclone prevails, pollen concentration is usually lower than the seasonal average. Some anticyclonal situations have a similar effect, while other anticyclonal types promote pollination. A predictive model was then created by multiple regression using the potential concentration, the mean concentration of the three previous days, the daily temperature fluctuation and the synoptic type as independent variables. This model can explain more than 68% of the total variance, and its accuracy is >71%. The model seems to predict accurately the trends during the pollen seasons, thus it will probably be a good tool in the practical prediction in Budapest, and the methodology will hopefully be applicable to other sites of the Carpathian Basin too.  相似文献   

12.
First data from a pollen survey carried out in the city of Murcia (SE Spain) are given in this paper. Using a Burkard Volumetric Spore Trap, daily slides were prepared and 80 pollen types belonging to 51 families andAlternaria spores were identified and counted. Special attention was paid to 14 relevant taxa: Cupressaceae,Pinus, Genisteae,Olea, Morus, Acer, Platanus, Plantago, Quercus, Urticaceae, Poaceae, Chenopodiaceae,Artemisia andAlternaria. The main sources of airborne particles wereAlternaria (27.7%), Cupressaceae (13.5%),Olea (9.36%), Chenopodiaceae (8.31%) and Urticaceae (5.8%). Annual variations in pollen abundance and length of the flowering seasons are given for individual species and are related to environmental factors. Results indicate a main pollen season from March to June and a second minor season in September to October. The relatively high concentrations of Genisteae and the appearance of anArtemisia winter season were noted.  相似文献   

13.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

14.
Summary Pollen data have been collected from 66 stations, situated in 19 European countries thanks to the initiative of both the Working Group «European Aeroallergen Network» (of the Int. Assoc. of Aerobiology) and the Subcommittee «Aerobiology of inhalant allergens» of the European Academy of Allergology and Clinical Immunology. Volumetric data over periods of 3 to 5 years (up to 1988) were included, and 15 both aerobiologically and allergologically relevant taxa were selected. Geographically adjacent stations were grouped together into regions looking at the peak period of the airborne grass-pollen presence. The result is a collection of 21 regional European pollen calendars, some of which are covering several countries (e.g. «Western Europe»), others are applicable only to a part of one country (e.g. «Southern Italy»).Comparing the calendars, general features are the South-to-North delay shift in the appearance of tree-pollen types in Spring, and the reverse shift for the weed-pollen types in late summer. The presence ofAmbrosia pollen in the air in several parts of Central Europe is clearly shown.  相似文献   

15.
The aim of this study was to determine the onset, length and end of the ragweed pollen season, taking into account diurnal, day-to-day, monthly and annual pollen variations, the effect of some meteorological parameters on atmospheric pollen concentrations and possible differences in the airborne pollen season and concentration due to sampling site. Airborne pollen was collected at three sites in central Croatia (Zagreb, Samobor and Ivanić Grad) during three pollen seasons (2002–2004). Seven-day Hirst-type volumetric pollen traps were used for pollen sampling. Ragweed pollen was the third most abundant pollen type to occur in the atmosphere of central Croatia. Total Ambrosia pollen concentration was the highest in the 2003 pollen season and the lowest in 2004 at all sampling sites. Maximum emissions were restricted to August and September. Intradiurnal periodicity showed a peak from 1000 to 1200 hours. The concentration of ragweed pollen during the pollen season was greatly influenced by temperature and precipitation: on rainy days accompanied by temperature decline, the air pollen concentration decreased abruptly. The results of this study are aimed at helping to alleviate the symptoms of allergic reactions in individuals with ragweed pollen hypersensitivity, thus improving their quality of life.  相似文献   

16.
A comparison of Betula pollen, animportant European aeroallergen, was undertakenat two sites of similar latitude, Derby, UnitedKingdom and Poznan, Poland from 1995–1999. Bothsites routinely monitor Betula pollenusing a Burkard continuous volumetric sampler.Daily and two-hourly March–June Betulapollen counts per cubic metre of air werestudied at both sites, together withcorresponding meteorological data. Detailedanalysis was undertaken to compare start dates,duration and quantity of Betula pollen.Derby usually had an earlier start of seasonthan Poznan, and both cities showed very littledifference between start dates determined byusing the SUM 75 or 2.5% method. The longestseasonal durations at Derby and Poznan yieldedthe lowest seasonal pollen indexes. Every yearfrom 1995–1999 the Betula seasonal pollenindex was higher in Poznan than in Derby. Poznanhad more daily counts of Betula pollengrains per cubic metre above 500, and at leastone daily count of 1000, each year. At bothsites the yearly seasonal variation correlatedwith the number of April days per year having amaximum temperature of 17 °C or above.There was a similar diurnal periodicity ofApril Betula pollen in Derby and Poznan.Although the two cities, at approximately thesame latitude, have different regional andmeteorological characteristics, the weatherappears to influence Betula pollenseasons in a similar manner. Local clinicianscould use the SUM 75 method as indicative ofthe start of the Betula pollen season atboth sites.  相似文献   

17.
During six consecutive years (1993–1998), aBurkard volumetric pollen trap was continuouslyoperated to sample pollen from the air of thecity of Murcia. The aim of the study was toelucidate the spectra of airborne pollen andthe variations during the year, and toelaborate a pollen calendar. This time spanincludes the end of the period with severedrought from 1990–1995, which particularly affected the south-eastern region of Spain.The total sum of daily average pollenconcentrations amounted to 148,645 pollen grainsbelonging to 93 different taxa. A daily averageof 74 pollen grains/m3 and 11 taxa wererecorded, with maxima of 1157 and 27respectively. The total pollen amountregistered in a year correlated with yearlyrainfall, but there was no relation with meanannual temperature. As for annual fluctuations,there seemed to be no influence by totalrainfall or temperature. Spring and winter werethe seasons with the highest pollen counts andpollen diversity.From the 93 identified taxa, 36 are included inthe pollen calendar. Noteworthy findings are:(i) the presence of Thymelaeaceae,Robinia, Betula, Castanea,Zygophyllum, Caryophyllaceae andCannabis, (ii) a long pollen season ofChenopodiaceae/Amaranthaceae, Urticaceae,Poaceae, Arecaceae and Plantago, (iii)the occurrence of summer, autumn and winterflowering of Artemisia, (iv) the lateappearance of Corylus pollen, and (v) theminor presence of Casuarina pollen duringthe mid winter and late spring.  相似文献   

18.
庞俊秀  薛惠芬  刘婉秋  龙鸿 《广西植物》2021,41(12):1996-2003
三倍体丹参是以二倍体丹参为父本、人工染色体加倍的四倍体白花丹参为母本杂交选育的杂交种。为深入了解三倍体丹参花粉的特性,以及为三倍体种质利用提供孢粉学依据,该文以二倍体丹参为对照,研究了三倍体丹参杂交种花粉的形态变异规律。利用光学显微镜和扫描电镜对二倍体和三倍体丹参的花粉萌发沟、外壁纹饰、花粉粒形状等特征进行了显微和超微形态观察,综合进行了花粉形态差异比较,并对花粉大小和形状数据进行了差异显著性分析和正态检验。结果表明:(1)二倍体丹参为6沟花粉,三倍体花粉萌发沟有6沟和8沟两种类型,沟内疣状颗粒分布不匀,出现畸形萌发沟。(2)二倍体和三倍体花粉外壁均为网状雕纹。二倍体花粉网眼内具多个多边形穿孔,穿孔大; 6沟和8沟两种类型的三倍体花粉网眼无穿孔或仅有几个小穿孔,6沟和8沟花粉的外壁雕纹相同。(3)三倍体花粉的极轴长(P)和赤道宽(E)均值显著小于二倍体花粉,花粉大小呈偏正态分布,P*E的差异系数大于二倍体花粉,且有极值存在。三倍体和二倍体丹参的萌发沟和雕纹存在差异,而花粉形状差异不显著。综上结果表明三倍体丹参花粉在倍性效应和杂合性的双重影响下发生了形态变异,且有多种形态变化。  相似文献   

19.
Pollen of Betula spp. is one of the main European aeroallergens. The aim of this study was to determine characteristics and occurrence of the Betula pollen in Novi Sad atmosphere, based on 3-year observations (2000–2002), and to compare pollen season start dates calculated by different methods. Pollen samples have been collected by Hirst volumetric method with a 7-day Burkard spore trap. Four methods (Sum 75, 2.5%, 30 and 1 pg/m 3) have been used for determination of the start dates of the Betula pollen season and the results have been compared. The total annual pollen sum increased during the observed period. In 2000, 2001 and 2002, the highest daily pollen concentrations were 97, 137 and 1034 pg/m 3, respectively. The earliest Betula pollen season start has been calculated by the 1 pg/m 3 method.  相似文献   

20.
Summary Our study of fifty two hay fever patients included twenty six solely allergic to grass pollen and twenty six exhibiting allergy to various pollen species, such as hazel, birch, oak, poplar, andArtemisia. Their total and specific IgE response was evalutated by the immunoenzymatic method, while clinical reactivity was assessed by recording nasal and bronchial symptom scores between mid-March and mid-July. Simultaneously pollen counts were made. Polysensitized patients showed significantly higher levels of both total and specific IgE, which testifies to the enhanced quantitative and qualitative IgE. Multisensitized patients reacted earlier than patients sensitized to grass pollen only, which confirms that non-grass plants flowering only in the spring cause the priming effect on the nasal and bronchial mucosa. The early symptoms may be attributable to tree pollen sensitivity or may refletct higher grass pollen IgE levels in the polysensitized group. Characteristically, nasal symptoms preceded bronchial symptoms of several weeks.On comparing nasal washing from the polysensitized patients to washing from patients with grass pollen, we found much cytological material with the predominance of eosinophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号